International Journal of Primatology

, Volume 30, Issue 6, pp 893–917 | Cite as

Studying Primate Color: Towards Visual System-dependent Methods

  • Martin Stevens
  • Mary Caswell Stoddard
  • James P. Higham
Article

Abstract

Primates exhibit a striking diversity of colors and patterns in their pelage and skin markings, used in functions as diverse as camouflage to sexual signaling. In studying primate colors, it is important to adopt approaches not based on human assessment wherever possible, and that preferably take account of the visual system of the appropriate receiver(s). Here, we outline some of the main techniques for recording the colors exhibited and encountered by primates, including the use of digital photography and reflectance spectrometry. We go on to discuss the main approaches for analyzing the data obtained, including those not linked to a particular visual system, such as direct analyses of reflectance spectra. We argue that researchers should strive for analyses based on the visual system of the relevant receiver, and outline some of the main modeling approaches that can be used, such as color space and discrimination threshold modeling. By analyzing color measures with respect to specific visual systems, field studies can link behavioral ecology to the visual and cognitive sciences, and move toward descriptions of signal information content that incorporate elements of receiver psychology. This in turn should lead to a greater understanding of the detection and interpretation of signals by receivers, and hence their likely use in decision making.

Keywords

coloration color measurement photography primates reflectance 

References

  1. Abràmoff, M. D., Magalhäes, P. J., & Ram, S. J. (2004). Image processing with Image J. Biophotonics International, 7, 36–43.Google Scholar
  2. Ammermüller, J., Itzhaki, A., Weiler, R., & Perlman, I. (1998). UV-sensitive input to horizontal cells in the turtle retina. European Journal of Neuroscience, 10, 1544–1552. doi:10.1046/j.1460-9568.1998.00160.x.CrossRefPubMedGoogle Scholar
  3. Andersson, S., & Amundsen, T. (1997). Ultraviolet colour vision and ornamentation in bluethroats. Proceedings of the Royal Society of London. Series B: Biological Sciences, 264, 1587–1591. doi:10.1098/rspb.1997.0221.CrossRefGoogle Scholar
  4. Andersson, S., & Prager, M. (2006). Quantifying colors. In G. E. Hill & K. J. McGraw (Eds.), Bird coloration, vol. I: Mechanisms & measurements (pp. 41–89). Cambridge, MA: Harvard University Press.Google Scholar
  5. Baldauf, S. A., Kullmann, H., & Bakker, T. C. M. (2008). Technical restrictions of computer-manipulated visual stimuli and display units for studying animal behaviour. Ethology, 114, 737–751. doi:10.1111/j.1439-0310.2008.01520.x.CrossRefGoogle Scholar
  6. Bercovitch, F. B. (1996). Testicular function and scrotal colouration in patas monkeys. Journal of Zoology, 239, 93–100.CrossRefGoogle Scholar
  7. Bergman, T. J., & Beehner, J. C. (2008). A simple method for measuring colour in wild animals: Validation and use of chest patch colour in geladas (Theropithecus gelada). Biological Journal of the Linnean Society. Linnean Society of London, 94, 231–240. doi:10.1111/j.1095-8312.2008.00981.x.CrossRefGoogle Scholar
  8. Bowmaker, J. K., Astell, S., Hunt, D. M., & Mollon, J. D. (1991). Photosensitive and photostabile pigments in the retinae of Old World monkeys. Journal of Experimental Biology, 156, 1–19.PubMedGoogle Scholar
  9. Bradley, B. J., & Mundy, N. I. (2008). The primate palette: The evolution of primate coloration. Evolutionary Anthropology, 17, 97–111. doi:10.1002/evan.20164.CrossRefGoogle Scholar
  10. Brainard, D. H., Williams, D. R., & Hofer, H. (2008). Trichromatic reconstruction from the interleaved cone mosaic: Bayesian model and the color appearance of small spots. Journal of Vision (Charlottesville, Va.), 8, 1–23. doi:10.1167/8.5.15.Google Scholar
  11. Chatterjee, S., & Callaway, E. M. (2003). Parallel colour-opponent pathways to the primary visual cortex. Nature, 426, 668–671. doi:10.1038/nature02167.CrossRefPubMedGoogle Scholar
  12. Chiao, C. C., Osorio, D., Vorobyev, M., & Cronin, T. W. (2000). Characterization of natural illuminants in forests and the use of digital video data to reconstruct illuminant spectra. Journal of the Optical Society of America, A, 17, 1713–1721.CrossRefGoogle Scholar
  13. Chichilnisky, E. J., & Wandell, B. A. (1999). Trichromatic opponent colour classification. Vision Research, 39, 3444–3458. doi:10.1016/S0042-6989(99)00033-4.CrossRefPubMedGoogle Scholar
  14. Cuthill, I. C. (2006). Color perception. In G. E. Hill & K. J. McGraw (Eds.), Bird coloration, vol. I: Mechanisms & measurements (pp. 3–40). Cambridge, MA: Harvard University Press.Google Scholar
  15. Cuthill, I. C., Bennett, A. T. D., Partridge, J. C., & Maier, E. H. (1999). Plumage reflectance and the objective assessment of avian sexual dichromatism. American Naturalist, 153, 183–200. doi:10.1086/303160.CrossRefGoogle Scholar
  16. Cuthill, I. C., Stevens, M., Sheppard, J., Maddocks, T., Párraga, C. A., & Troscianko, T. (2005). Disruptive coloration and background pattern matching. Nature, 434, 72–74. doi:10.1038/nature03312.CrossRefPubMedGoogle Scholar
  17. Dacey, D. M. (2000). Parallel pathways for spectral coding in the primate retina. Annual Review of Neuroscience, 23, 743–775. doi:10.1146/annurev.neuro.23.1.743.CrossRefPubMedGoogle Scholar
  18. Darst, C. R., Cummings, M. E., & Cannatella, D. C. (2006). A mechanism for diversity in warning signals: Conspicuousness versus toxicity in poison frogs. Proceedings of the National Academy of Sciences of the United States of America, 103, 5852–5857. doi:10.1073/pnas.0600625103.CrossRefPubMedGoogle Scholar
  19. Dartnall, H. J. A., Bowmaker, J. K., & Mollon, J. D. (1983). Human visual pigments: Microspectrophotometric results from the eyes of seven persons. Proceedings of the Royal Society of London. Series B: Biological Sciences, 220, 115–130. doi:10.1098/rspb.1983.0091.CrossRefGoogle Scholar
  20. D’Eath, R. B. (1998). Can video images imitate real stimuli in animal behaviour experiments? Biological Reviews of the Cambridge Philosophical Society, 73, 267–292. doi:10.1017/S0006323198005179.CrossRefGoogle Scholar
  21. Deegan, J. F., II, & Jacobs, G. H. (2001). Spectral sensitivity of gibbons: Implications for photopigments and color vision. Folia Primatologica, 72, 26–29. doi:10.1159/000049915.CrossRefGoogle Scholar
  22. Dkhissi-Benyahya, O., Szel, A., Degrip, W. J., & Cooper, H. M. (2001). Short and mid-wave cone distribution in a nocturnal Strepsirrhine primate (Microcebus murinus). Journal of Comparative Neurology, 438, 490–504. doi:10.1002/cne.1330.CrossRefPubMedGoogle Scholar
  23. Efford, N. (2000). Digital image processing: A practical introduction using Java. Harlow, Essex: Pearson Education.Google Scholar
  24. Endler, J. A. (1990). On the measurement and classification of colour in studies of animal colour patterns. Biological Journal of the Linnean Society. Linnean Society of London, 41, 315–352. doi:10.1111/j.1095-8312.1990.tb00839.x.CrossRefGoogle Scholar
  25. Endler, J. A., & Mielke, P. W. J. (2005). Comparing color patterns as birds see them. Biological Journal of the Linnean Society. Linnean Society of London, 86, 405–431. doi:10.1111/j.1095-8312.2005.00540.x.CrossRefGoogle Scholar
  26. Endler, J. A., Westcott, D. A., Madden, J. R., & Robson, T. (2005). Animal visual systems and the evolution of color patterns; sensory processing illuminates signal evolution. Evolution; International Journal of Organic Evolution, 50, 1795–1818.Google Scholar
  27. Fleishman, L. J., & Endler, J. A. (2000). Some comments on visual perception and the use of video playback in animal behavior studies. Acta Ethologica, 3, 15–27. doi:10.1007/s102110000025.CrossRefGoogle Scholar
  28. Fleishman, L. J., Mcclintock, W. J., D’Eath, R. B., Brainard, D. H., & Endler, J. A. (1998). Colour perception and the use of video playback experiments in animal behaviour. Animal Behaviour, 56, 1035–1040. doi:10.1006/anbe.1998.0894.CrossRefPubMedGoogle Scholar
  29. Gerald, M. S. (2001). Primate colour predicts social status and aggressive outcome. Animal Behaviour, 61, 559–566. doi:10.1006/anbe.2000.1648.CrossRefGoogle Scholar
  30. Gerald, M. S., Bernstein, J., Hinkson, R., & Fosbury, R. A. E. (2001). Formal method for objective assessment of primate color. American Journal of Primatology, 53, 79–85. doi:10.1002/1098-2345(200102) 53:2<79::AID-AJP3>3.0.CO;2-N.CrossRefPubMedGoogle Scholar
  31. Gerald, M. S., Weiss, A., & Ayala, J. E. (2006a). Artificial colour treatment mediates aggression among unfamiliar vervet monkeys (Cercopithecus aethiops): A model for introducing primates with colourful sexual skin. Animal Welfare (South Mimms, England), 15, 363–369.Google Scholar
  32. Gerald, M. S., Waitt, C., & Maestripieri, D. (2006b). An experimental examination of female responses to infant face coloration in rhesus macaques. Behavioural Processes, 73, 253–256. doi:10.1016/j.beproc.2006.06.003.CrossRefPubMedGoogle Scholar
  33. Gerald, M. S., Waitt, C., Little, A. C., & Kraiselburd, E. (2007). Females pay attention to female secondary sexual color: An experimental study in Macaca mulatta. International Journal of Primatology, 28, 1–7. doi:10.1007/s10764-006-9110-8.CrossRefGoogle Scholar
  34. Goldsmith, T. H. (1990). Optimization, constraint, and history in the evolution of eyes. Quarterly Review of Biology, 65, 281–322. doi:10.1086/416840.CrossRefPubMedGoogle Scholar
  35. Gonzalez, R. C., Woods, R. E., & Eddins, S. L. (2004). Digital image processing using MATLAB. London: Pearson Education.Google Scholar
  36. Graham, N. V. S. (1989). Visual pattern analysers. Oxford Psychology Series. Oxford: Oxford University Press.CrossRefGoogle Scholar
  37. Gregory, R. L. (1998). Eye and brain: The psychology of seeing. Oxford: Oxford University Press.Google Scholar
  38. Ham, A. D., & Osorio, D. (2007). Colour preference and colour vision in poultry chicks. Proceedings of the Royal Society, Series B, 274, 1941–1948. doi:10.1098/rspb.2007.0538.CrossRefGoogle Scholar
  39. Håstad, O., Victorsson, J., & Ödeen, A. (2005). Differences in color vision make passerines less conspicuous in the eyes of their predators. Proceedings of the National Academy of Sciences of the United States of America, 102, 6391–6394. doi:10.1073/pnas.0409228102.CrossRefPubMedGoogle Scholar
  40. Higham, J. P. (2006). The reproductive ecology of female olive baboons (Papio hamadryas anubis) at Gashaka-Gumti National Park, Nigeria. PhD thesis. Roehampton University: London.Google Scholar
  41. Higham, J. P., MacLarnon, A., Ross, C., Heistermann, M., & Semple, S. (2008). Baboon sexual swellings: Information content of size and color. Hormones and Behavior, 53, 452–462. doi:10.1016/j.yhbeh.2007.11.019.CrossRefPubMedGoogle Scholar
  42. Isbell, L. A. (1995). Seasonal and social correlates of changes in hair, skin, and scrotal condition in vervet monkeys (Cercopithecus aethiops) of Amboseli National Park, Kenya. American Journal of Primatology, 36, 61–70. doi:10.1002/ajp. 1350360105.CrossRefGoogle Scholar
  43. Jacobs, G. H. (1996). Primate photopigments and primate color vision. Proceedings of the National Academy of Sciences of the United States of America, 93, 577–581. doi:10.1073/pnas.93.2.577.CrossRefPubMedGoogle Scholar
  44. Jacobs, G. H. (2007). New World monkeys and color. International Journal of Primatology, 28, 729–759. doi:10.1007/s10764-007-9168-y.CrossRefGoogle Scholar
  45. Jacobs, G. H., & Deegan, J. F., II. (1993). Photopigments underlying color vision in ringtail lemurs (Lemur caffa) and brown lemurs (Eulemur fulvus). American Journal of Primatology, 30, 243–256. doi:10.1002/ajp. 1350300307.CrossRefGoogle Scholar
  46. Jacobs, G. H., & Deegan, J. F., II. (1999). Uniformity of colour vision in Old World monkeys. Proceedings of the Royal Society, Series B, 26, 2023–2028.CrossRefGoogle Scholar
  47. Jacobs, G. H., & Deegan, J. F., II. (2003). Cone pigment variations in four genera of New World monkeys. Vision Research, 43, 227–236. doi:10.1016/S0042-6989(02)00565-5.CrossRefPubMedGoogle Scholar
  48. Jacobs, G. H., & Williams, G. A. (2006). L and M cone proportions in polymorphic New World monkeys. Visual Neuroscience, 23, 365–370. doi:10.1017/S0952523806233066.CrossRefPubMedGoogle Scholar
  49. Jordan, G., & Mollon, J. D. (1992). Do tetrachromatic women exist? Investigative Ophthalmology & Visual Science, 33, 754.Google Scholar
  50. Kelber, A., Vorobyev, M., & Osorio, D. (2003). Animal colour vision—behavioural tests and physiological concepts. Biological Reviews of the Cambridge Philosophical Society, 78, 81–118. doi:10.1017/S1464793102005985.CrossRefPubMedGoogle Scholar
  51. Knoblauch, K., Neitz, M., & Neitz, J. (2006). An urn model of the development of L/M cone ratios in human and macaque retinas. Visual Neuroscience, 23, 387–394. doi:10.1017/S0952523806233157.CrossRefPubMedGoogle Scholar
  52. Kremers, J., Scholl, H. P. N., Knau, H., Berendschot, T. T. J. M., Usui, T., & Sharpe, L. T. (2000). L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry. Journal of the Optical Society of America, A, 17, 517–526.CrossRefGoogle Scholar
  53. Lennie, P., Pokorny, J., & Smith, V. C. (1993). Luminance. Journal of the Optical Society of America, A, 10, 1283–1293.CrossRefGoogle Scholar
  54. Lovell, P. G., Tolhurst, D. J., Párraga, C. A., Baddeley, R., Leonards, U., Troscianko, J., et al. (2005). Stability of the color-opponent signals under changes of illuminant in natural scenes. Journal of the Optical Society of America, 22, 2060–2071. doi:10.1364/JOSAA.22.002060.CrossRefPubMedGoogle Scholar
  55. MacLeod, D. I., & Boynton, R. M. (1979). Chromaticity diagram showing cone excitation by stimuli of equal luminance. Journal of the Optical Society of America, 69, 1183–1186. doi:10.1364/JOSA.69.001183.CrossRefPubMedGoogle Scholar
  56. Maddocks, S. A., Church, S. C., & Cuthill, I. C. (2001). The effects of the light environment on prey choice by zebra finches. Journal of Experimental Biology, 204, 2509–2515.PubMedGoogle Scholar
  57. Marc, R. E., & Sperling, H. G. (1977). Chromatic organization of primate cones. Science, 296, 454–456. doi:10.1126/science.403607.CrossRefGoogle Scholar
  58. Montgomerie, R. (2006). Analyzing colors. In G. E. Hill & K. J. McGraw (Eds.), Bird coloration, Vol. I: mechanisms & measurements (pp. 90–147). Cambridge, MA: Harvard University Press.Google Scholar
  59. Osorio, D., & Ham, A. D. (2002). Spectral reflectance and directional properties of structural coloration bird plumage. Journal of Experimental Biology, 205, 2017–2027.PubMedGoogle Scholar
  60. Osorio, D., & Vorobyev, M. (1996). Colour vision as an adaptation to frugivory in primates. Proceedings of the Royal Society of London. Series B: Biological Sciences, 263, 593–599. doi:10.1098/rspb.1996.0089.CrossRefPubMedGoogle Scholar
  61. Osorio, D., & Vorobyev, M. (2005). Photoreceptor spectral sensitivities in terrestrial animals: adaptations for luminance and colour vision. Proceedings of the Royal Society of London. Series B: Biological Sciences, 272, 1745–1752. doi:10.1098/rspb.2005.3156.CrossRefPubMedGoogle Scholar
  62. Osorio, D., & Vorobyev, M. (2008). A review of the evolution of animal colour vision and visual communication signals. Vision Research, 48, 2042–2051. doi:10.1016/j.visres.2008.06.018.CrossRefPubMedGoogle Scholar
  63. Osorio, D., Vorobyev, M., & Jones, C. D. (1999). Colour vision in domestic chicks. Journal of Experimental Biology, 202, 2951–2959.PubMedGoogle Scholar
  64. Osorio, D., Smith, A. C., Vorobyev, M., & Buchanan-Smith, H. M. (2004). Detection of fruit and the selection of primate visual pigments for color vision. American Naturalist, 164, 696–708. doi:10.1086/425332.CrossRefGoogle Scholar
  65. Párraga, C. A., Troscianko, T., & Tolhurst, D. J. (2002). Spatiochromatic properties of natural images and human vision. Current Biology, 12, 483–487. doi:10.1016/S0960-9822(02)00718-2.CrossRefPubMedGoogle Scholar
  66. Rasband, W. S. (1997–2009). Image J. Bethesda, MD: National Institutes of Health. Retrieved from http:/rsb.info.nih.gov/ij/.
  67. Regan, B. C., Julliot, C., Simmen, B., Viénot, F., Charles-Dominique, P., & Mollon, J. D. (1998). Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey. Vision Research, 38, 3321–3327. doi:10.1016/S0042-6989(97)00462-8.CrossRefPubMedGoogle Scholar
  68. Regan, B. C., Julliot, C., Simmen, B., Viénot, F., Charles-Dominique, P., & Mollon, J. D. (2001). Fruits, foliage and the evolution of primate colour vision. Philosophical Transactions of the Royal Society of London, Series B, 356, 229–283. doi:10.1098/rstb.2000.0773.CrossRefGoogle Scholar
  69. Rolls, E. T., & Deco, G. (2002). Computational neuroscience of vision. Oxford: Oxford University Press.Google Scholar
  70. Rovamo, J. M., Kankaanpaa, M. I., & Hallikainen, J. (2001). Spatial neural modulation transfer function of human foveal visual system for equiluminous chromatic gratings. Vision Research, 41, 1659–1667. doi:10.1016/S0042-6989(01)00036-0.CrossRefPubMedGoogle Scholar
  71. Rowland, H. M., Speed, M. P., Ruxton, G. D., Edmunds, M., Stevens, M., & Harvey, I. F. (2007). Countershading enhances cryptic protection: An experiment with wild birds and artificial prey. Animal Behaviour, 74, 1249–1258. doi:10.1016/j.anbehav.2007.01.030.CrossRefGoogle Scholar
  72. Santos, S. I. C. O., De Neve, L., Lumeij, J. T., & Förschler, M. I. (2007). Strong effects of various incidence and observation angles on spectrometric assessment of plumage colouration in birds. Behavioral Ecology and Sociobiology, 61, 1499–1506. doi:10.1007/s00265-007-0373-7.CrossRefGoogle Scholar
  73. Setchell, J. M., & Dixson, A. F. (2001). Changes in the secondary sexual adornments of male Mandrills (Mandrillus sphinx) are associated with gain and loss of alpha status. Hormones and Behavior, 39, 177–184. doi:10.1006/hbeh.2000.1628.CrossRefPubMedGoogle Scholar
  74. Setchell, J. M., Wickings, E. J., & Knapp, L. A. (2006). Signal content of red facial coloration in female mandrills (Mandrillus sphinx). Proceedings of the Royal Society of London. Series B: Biological Sciences, 273, 2395–2400. doi:10.1098/rspb.2006.3573.CrossRefPubMedGoogle Scholar
  75. Siddiqi, A., Cronin, T. W., Loew, E. R., Vorobyev, M., & Summers, K. (2004). Interspecific and intraspecific views of color signals in the strawberry poison frog Dendrobates pumilio. Journal of Experimental Biology, 207, 2471–2485. doi:10.1242/jeb.01047.CrossRefPubMedGoogle Scholar
  76. Siitari, H., Honkavaara, J., Huhta, E., & Viitala, J. (2002). Ultraviolet reflection and female mate choice in the pied flycatcher, Ficedula hypoleuca. Animal Behaviour, 63, 97–102. doi:10.1006/anbe.2001.1870.CrossRefGoogle Scholar
  77. Stevens, M., & Cuthill, I. C. (2005). The unsuitability of html-based colour charts for estimating animal colours—a comment on Berggren & Merilä. Frontiers in Zoology, 2, 1–14. doi:10.1186/1742-9994-2-14.CrossRefGoogle Scholar
  78. Stevens, M., & Cuthill, I. C. (2006). Disruptive coloration, crypsis and edge detection in early visual processing. Proceedings of the Royal Society, Series B, 273, 2141–2147. doi:10.1098/rspb.2006.3556.CrossRefGoogle Scholar
  79. Stevens, M., & Cuthill, I. C. (2007). Hidden messages: Are ultraviolet signals a special channel in avian communication? BioScience, 57, 501–507. doi:10.1641/B570607.CrossRefGoogle Scholar
  80. Stevens, M., Párraga, C. A., Cuthill, I. C., Partridge, J. C., & Troscianko, T. S. (2007a). Using digital photography to study animal coloration. Biological Journal of the Linnean Society. Linnean Society of London, 90, 211–237. doi:10.1111/j.1095-8312.2007.00725.x.CrossRefGoogle Scholar
  81. Stevens, M., Hopkins, E., Hinde, W., Adcock, A., Connelly, Y., Troscianko, T., et al. (2007b). Field experiments on the effectiveness of ‘eyespots’ as predator deterrents. Animal Behaviour, 74, 1215–1227. doi:10.1016/j.anbehav.2007.01.031.CrossRefGoogle Scholar
  82. Stevens, M., Winney, I. S., Cantor, A., & Graham, J. (2009). Object outline and surface disruption in animal camouflage. Proceedings of the Royal Society, Series B, 276, 781–786. doi:10.1098/rspb.2008.1450.CrossRefGoogle Scholar
  83. Stobbe, N., & Schaefer, H. M. (2008). Enhancement of chromatic contrast increases predation risk for striped butterflies. Proceedings of the Royal Society, Series B, 275, 1535–1541. doi:10.1098/rspb.2008.0209.CrossRefGoogle Scholar
  84. Stockman, A., & Plummer, D. J. (2005). Spectrally opponent inputs to the human luminance pathway: Slow +L and −M cone inputs revealed by low to moderate long-wavelength adaptation. Journal of Physiology, 566, 77–91. doi:10.1113/jphysiol.2005.084095.CrossRefPubMedGoogle Scholar
  85. Stoddard, M. C., & Prum, R. O. (2008). Evolution of avian plumage color in a tricolor space: A phylogenetic analysis of New World buntings. American Naturalist, 171, 755–776. doi:10.1086/587526.CrossRefPubMedGoogle Scholar
  86. Sumner, P., & Mollon, J. D. (2000a). Catarrhine photopigments are optimised for detecting targets against a foliage background. Journal of Experimental Biology, 203, 1963–1986.PubMedGoogle Scholar
  87. Sumner, P., & Mollon, J. D. (2000b). Chromaticity as a signal of ripeness in fruits taken by primates. Journal of Experimental Biology, 203, 1987–2000.PubMedGoogle Scholar
  88. Sumner, P., & Mollon, J. D. (2003). Colors of primate pelage and skin: Objective assessment of conspicuousness. American Journal of Primatology, 59, 67–91. doi:10.1002/ajp. 10066.CrossRefPubMedGoogle Scholar
  89. Sumner, P., Arrese, C. A., & Partridge, J. C. (2005). Journal of Experimental Biology, 208, 1803–1815. doi:10.1242/jeb.01610.CrossRefPubMedGoogle Scholar
  90. Surridge, A. K., Osorio, D., & Mundy, N. I. (2003). Evolution and selection of trichromatic vision in primates. Trends in Ecology & Evolution, 18, 198–205. doi:10.1016/S0169-5347(03)00012-0.CrossRefGoogle Scholar
  91. Tan, Y., & Li, W.-H. (1999). Trichromatic vision in prosimians. Nature, 402, 36. doi:10.1038/46947.CrossRefPubMedGoogle Scholar
  92. Tovée, M. J. (1995). Ultraviolet photoreceptors in the animal kingdom: Their distribution and function. Trends in Ecology & Evolution, 10, 455–460. doi:10.1016/S0169-5347(00)89179-X.CrossRefGoogle Scholar
  93. Ventura, D. F., deSouza, J. M., Devoe, R. D., & Zana, Y. (1999). UV responses in the retina of the turtle. Visual Neuroscience, 16, 191–204. doi:10.1017/S0952523899162011.CrossRefPubMedGoogle Scholar
  94. Vorobyev, M., & Osorio, D. (1998). Receptor noise as a determinant of colour thresholds. Proceedings of the Royal Society of London. Series B: Biological Sciences, 265, 351–358. doi:10.1098/rspb.1998.0302.CrossRefPubMedGoogle Scholar
  95. Vorobyev, M., Osorio, D., Bennett, A. T. D., Marshall, N. J., & Cuthill, I. C. (1998). Tetrachromacy, oil droplets and bird plumage colours. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology, 183, 621–633. doi:10.1007/s003590050286.CrossRefPubMedGoogle Scholar
  96. Vorobyev, M., Brandt, R., Peitsch, D., Laughlin, S. B., & Menzel, R. (2001). Colour thresholds and receptor noise: Behaviour and physiology compared. Vision Research, 41, 639–653. doi:10.1016/S0042-6989(00)00288-1.CrossRefPubMedGoogle Scholar
  97. Waitt, C., & Buchanan-Smith, H. M. (2006). Perceptual considerations in the use of colored photographic and video stimuli to study nonhuman primate behaviour. American Journal of Primatology, 68, 1054–1067. doi:10.1002/ajp.20303.CrossRefPubMedGoogle Scholar
  98. Waitt, C., Gerald, M. S., Little, A. C., & Kraiselburd, E. (2006). Selective attention toward female secondary sexual color in male rhesus macaques. American Journal of Primatology, 68, 738–744. doi:10.1002/ajp.20264.CrossRefPubMedGoogle Scholar
  99. Westland, S., & Ripamonti, C. (2004). Computational colour science using MATLAB. Chichester, West Sussex: John Wiley & Sons.CrossRefGoogle Scholar
  100. Wickings, E. J., & Dixson, A. F. (1992). Testicular function, secondary sexual development, and social status in male mandrills (Mandrillus sphinx). Physiology & Behavior, 52, 909–916. doi:10.1016/0031-9384(92)90370-H.CrossRefGoogle Scholar
  101. Wyszecki, G., & Stiles, W. S. (1982). Color science: Concepts and methods, quantitative data and formulae. New York: John Wiley & Sons.Google Scholar
  102. Zylinski, S., Osorio, D., & Shohet, A. J. (2009). Perception of edges and texture in the camouflage of the common cuttlefish, Sepia officinalis. Philosophical Transactions of the Royal Society of London, Series B, 364, 439–448. doi:10.1098/rstb.2008.0264.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Martin Stevens
    • 1
  • Mary Caswell Stoddard
    • 1
  • James P. Higham
    • 2
  1. 1.Department of ZoologyUniversity of CambridgeCambridgeUK
  2. 2.Institute for Mind and BiologyUniversity of ChicagoChicagoUSA

Personalised recommendations