International Journal of Primatology

, Volume 30, Issue 2, pp 267–281 | Cite as

The Social System of Lariang Tarsiers (Tarsius lariang) as Revealed by Genetic Analyses

  • Christine Driller
  • Dyah Perwitasari-Farajallah
  • Hans Zischler
  • Stefan Merker


Previous sociobiological studies of tarsiers were invariably based on field observations. Sulawesi tarsiers are known for monogamous or facultative polygynous social mating systems, but, to date, no data exist to describe the genetic mating system. We here bring together behavioral studies and molecular tools for the first time to elucidate mating behavior and kinship within a tarsier population. We investigated the social system of the recently described Tarsius lariang, which researchers have never studied before. Between September and November 2005, we conducted field observations and sampling in central Sulawesi, Indonesia, where this species is endemic. Ten of 11 social groups of the focal population were composed of 1 adult male, 1 adult female, and putative offspring. To enlighten genetic relationships, we used 12 microsatellite loci and mitochondrial DNA sequences of 26 captured and sampled Lariang tarsiers for parentage and relatedness analyses. A significant number of young were the offspring of the sampled group adults, suggesting a predominantly monogamous social and genetic mating system. There is evidence for extrapair young in groups in which adult pairs exhibit close relationships, leading to the assumption that extrapair mating is solicited to avoid inbreeding. Ten of 11 social groups lived in monogamous social systems, indicating monogamy to be the rule in Tarsius lariang.


extrapair mating microsatellites monogamy parentage tarsiers 



We thank PSSP-IPB, LIPI, PHKA, PHPA, and BTNLL for authorization and support of our research in Indonesia. We also thank our field assistants Cali, Ecil, Leo, Ojan, Thony, and Yulisan. Deutsche Forschungsgemeinschaft (DFG) grant Me2730/1-1 (to S. Merker) supported our work.


  1. Alberts, S. C., Altmann, J., & Wilson, M. L. (1996). Mate guarding constrains foraging activity of male baboons. Animal Behaviour, 51, 1269–1277. doi: 10.1006/anbe.1996.0131.CrossRefGoogle Scholar
  2. Altmann, S. A. (1974). Baboons, space, time, and energy. American Zoologist, 14, 221–248.Google Scholar
  3. Bearder, S. K. (1987). Lorises, bushbabies, and tarsiers: Diverse societies in solitary foragers. In B. B. Smuts, D. L. Cheney, R. M. Seyfarth, R. W. Wrangham, & T. T. Struhsaker (Eds.), Primate Societies (pp. pp. 14–24). Chicago: University of Chicago Press.Google Scholar
  4. Bearder, S. K. (1999). Physical and social diversity among nocturnal primates: A new view based on long term research. Primates, 40, 267–282. doi: 10.1007/BF02557715.CrossRefGoogle Scholar
  5. Blouin, M. S. (2003). DNA-based methods for pedigree reconstruction and kinship analysis in natural populations. Trends in Ecology & Evolution, 18, 503–511. doi: 10.1016/S0169-5347(03)00225-8.CrossRefGoogle Scholar
  6. Brandon-Jones, D., Eudey, A. A., Geissmann, T., Groves, C. P., Melnick, D. J., Morales, J. C., Shekelle, M., & Stewart, C.-B. (2004). Asian primate classification. International Journal of Primatology, 25, 97–164. doi: 10.1023/B:IJOP.0000014647.18720.32.CrossRefGoogle Scholar
  7. Brotherton, P. N. M., & Rhodes, A. (1996). Monogamy without biparental care in a dwarf antelope. Proceedings of the Royal Society of London. Series B. Biological Sciences, 263, 23–29. doi: 10.1098/rspb.1996.0005.CrossRefGoogle Scholar
  8. Chapman, C. A., Wrangham, R. W., & Chapman, L. J. (1995). Ecological constraints on group size: An analysis of spider monkey and chimpanzee subgroups. Behavioral Ecology and Sociobiology, 36, 59–70. doi: 10.1007/BF00175729.CrossRefGoogle Scholar
  9. Crompton, R. H., & Andau, P. M. (1987). Ranging, activity rhythms, and sociality in free-ranging Tarsius bancanus: A preliminary report. International Journal of Primatology, 8, 43–71. doi: 10.1007/BF02737113.CrossRefGoogle Scholar
  10. Fuentes, A. (1998). Re-evaluating primate monogamy. American Anthropologist, 100, 890–907. doi: 10.1525/aa.1998.100.4.890.CrossRefGoogle Scholar
  11. Fietz, J., Zischler, H., Schwiegk, C., Tomiuk, J., Dausmann, K. H., & Ganzhorn, J. U. (2000). High rates of extra-pair young in the pair-living fat-tailed dwarf lemur, Cheirogaleus medius. Behavioral Ecology and Sociobiology, 49, 8–17. doi: 10.1007/s002650000269.CrossRefGoogle Scholar
  12. Goodman, M., Porter, C. A., Czelusniak, J., Page, S. L., Schneider, H., Shoshani, J., Gunnell, G., & Groves, C. P. (1998). Toward a phylogenetic classification of primates based on DNA evidence complemented by fossil evidence. Molecular Phylogenetics and Evolution, 9, 585–598. doi: 10.1006/mpev.1998.0495.PubMedCrossRefGoogle Scholar
  13. Goossens, B., Graziani, L., Waits, L. P., Farand, E., Magnolon, S., Coulon, J., Bel, M.-C., Taberlet, P., & Allainé, D. (1998). Extra-pair paternity in the monogamous alpine marmot revealed by nuclear DNA microsatellite analysis. Behavioral Ecology and Sociobiology, 43, 281–288. doi: 10.1007/s002650050492.CrossRefGoogle Scholar
  14. Greenwood, P. J. (1980). Mating systems, philopatry and dispersal in birds and mammals. Animal Behaviour, 28, 1140–1162. doi: 10.1016/S0003-3472(80)80103-5.CrossRefGoogle Scholar
  15. Gursky, S. (1995). Group size and composition in the Spectral tarsier, Tarsius spectrum: Implications for social organization. Tropical Biodiversity, 3, 57–62.Google Scholar
  16. Gursky, S. (2000a). Allocare in a nocturnal primate: Data on the Spectral tarsier, Tarsius spectrum. Folia Primatologica, 71, 39–54. doi: 10.1159/000021729.CrossRefGoogle Scholar
  17. Gursky, S. (2000b). Effects of seasonality on the behavior of an insectivorous primate, Tarsius spectrum. International Journal of Primatology, 21, 477–495. doi: 10.1023/A:1005444020059.CrossRefGoogle Scholar
  18. Gursky, S. (2002). The behavioral ecology of the Spectral tarsier, Tarsius spectrum. Evolutionary Anthropology, 11, 226–234. doi: 10.1002/evan.10035.CrossRefGoogle Scholar
  19. Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.Google Scholar
  20. Hughes, C. (1998). Integrating molecular techniques with field methods in studies of social behavior: A revolution results. Ecology, 79, 383–399.CrossRefGoogle Scholar
  21. Jaworski, C. J. (1995). A reassessment of mammalian αA-crystallin sequences using DNA sequencing: Implications for anthropoid affinities of tarsier. Journal of Molecular Evolution, 41, 901–908. doi: 10.1007/BF00173170.PubMedCrossRefGoogle Scholar
  22. Kappeler, P. M. (1997). Determinants of primate social organization: Comparative evidence and new insights from Malagasy lemurs. Biological Reviews of the Cambridge Philosophical Society, 72, 111–151. doi: 10.1017/S0006323196004999.PubMedCrossRefGoogle Scholar
  23. Kappeler, P. M., & van Schaik, C. P. (2002). Evolution of primate social systems. International Journal of Primatology, 23, 707–740. doi: 10.1023/A:1015520830318.CrossRefGoogle Scholar
  24. Kleiman, D. G. (1977). Monogamy in mammals. The Quarterly Review of Biology, 52, 39–69. doi: 10.1086/409721.PubMedCrossRefGoogle Scholar
  25. Komers, P. E. (1996). Obligate monogamy without paternal care in Kirk`s dikdik. Animal Behaviour, 51, 131–140. doi: 10.1006/anbe.1996.0011.CrossRefGoogle Scholar
  26. Komers, P. E., & Brotherton, P. N. M. (1997). Female space use is the best predictor of monogamy in mammals. Proceedings of the Royal Society of London. Series B. Biological Sciences, 264, 1261–1270. doi: 10.1098/rspb.1997.0174.CrossRefGoogle Scholar
  27. MacKinnon, J., & MacKinnon, K. (1980). The behavior of wild Spectral tarsiers. International Journal of Primatology, 1, 361–379. doi: 10.1007/BF02692280.CrossRefGoogle Scholar
  28. Marshall, T. C., Slate, J., Kruuk, L. E. B., & Pemberton, J. M. (1998). Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology, 7, 639–655. doi: 10.1046/j.1365-294x.1998.00374.x.PubMedCrossRefGoogle Scholar
  29. Merker, S. (2003). Vom Aussterben bedroht oder anpassungsfähig? Der Koboldmaki Tarsius dianae in den Regenwäldern Sulawesis. Dissertation. Georg-August Universität Göttingen.Google Scholar
  30. Merker, S. (2006). Habitat-specific ranging patterns of Dian`s tarsiers (Tarsius dianae) as revealed by radiotracking. American Journal of Primatology, 68, 111–125. doi: 10.1002/ajp.20210.PubMedCrossRefGoogle Scholar
  31. Merker, S., & Groves, C. P. (2006). Tarsius lariang: A new primate species from Western Central Sulawesi. International Journal of Primatology, 27, 465–485. doi: 10.1007/s10764-006-9038-z.CrossRefGoogle Scholar
  32. Merker, S., Yustian, I., & Mühlenberg, M. (2005). Responding to forest degradation: Altered habitat use by Dian`s tarsier Tarsius dianae in Sulawesi, Indonesia. Oryx, 39, 189–195. doi: 10.1017/S0030605305000438.CrossRefGoogle Scholar
  33. Merker, S., Driller, C., Perwitasari-Farajallah, D., Zahner, R., & Zischler, H. (2007). Isolation and characterization of 12 microsatellite loci for population studies of Sulawesi tarsiers (Tarsius spp.). Molecular Ecology Notes, 7, 1216–1218. doi: 10.1111/j.1471-8286.2007.01836.x.CrossRefGoogle Scholar
  34. Muniz, L., Perry, S., Manson, J. H., Gilkenson, H., Gros-Louis, J., & Vigilant, L. (2006). Father-daughter inbreeding avoidance in a wild primate population. Current Biology, 16, R156–R157. doi: 10.1016/j.cub.2006.02.055.PubMedCrossRefGoogle Scholar
  35. Munshi-South, J. (2007). Extra-pair paternity and the evolution of testis size in a behaviorally monogamous tropical mammal, the large treeshrew (Tupaia tana). Behavioral Ecology and Sociobiology, 62, 201–212. doi: 10.1007/s00265-007-0454-7.CrossRefGoogle Scholar
  36. Musser, G. G., & Dagosto, M. (1987). The identity of Tarsius pumilus, a pygmy species endemic to the montane mossy forests of Central Sulawesi. American Museum Novitates, 2867, 1–53.Google Scholar
  37. Napier, J. R., & Walker, A. C. (1967). Vertical clinging and leaping: A newly recognized category of locomotor behaviour of primates. Folia Primatologica, 6, 204–219. doi: 10.1159/000155079.CrossRefGoogle Scholar
  38. Niemitz, C. (1984). An investigation and review of the territorial behaviour and social organisation of the genus Tarsius. In C. Niemitz (Ed.), Biology of Tarsiers (pp. 117–127). Stuttgart and New York: Gustav Fischer Verlag.Google Scholar
  39. Parker, P. G., Snow, A. A., Schug, M. D., Booton, G. C., & Fuerst, P. A. (1998). What molecules can tell us about populations: Choosing and using a molecular marker. Ecology, 79, 361–382.Google Scholar
  40. Porter, C. A., Page, S. L., Czelusniak, J., Schneider, H., Schneider, M. P. C., Sampaio, I., & Goodman, M. (1997). Phylogeny and evolution of selected primates as determined by sequences of the ε-globin locus and 5’ flanking regions. International Journal of Primatology, 18, 261–295. doi: 10.1023/A:1026328804319.CrossRefGoogle Scholar
  41. Queller, D. C., & Goodnight, K. F. (1989). Estimating relatedness using genetic markers. Evolution; International Journal of Organic Evolution, 43, 258–275. doi: 10.2307/2409206.Google Scholar
  42. Raymond, M., & Rousset, F. (1995). Genepop (version 1.2): Population genetics software for exact tests and ecumenicism. The Journal of Heredity, 86, 248–249.Google Scholar
  43. Ross, C. (2001). Park or ride? Evolution of infant carrying in primates. International Journal of Primatology, 22, 749–771. doi: 10.1023/A:1012065332758.CrossRefGoogle Scholar
  44. Rutberg, A. T. (1983). The evolution of monogamy in primates. Journal of Theoretical Biology, 104, 93–112. doi: 10.1016/0022-5193(83)90403-4.PubMedCrossRefGoogle Scholar
  45. Schmitz, J., Ohme, M., & Zischler, H. (2001). SINE insertions in cladistic analyses and the phylogenetic affiliations of Tarsius banacanus to other primates. Genetics, 157, 777–784.PubMedGoogle Scholar
  46. Shekelle, M., Groves, C., Merker, S., & Supriatna, J. (2008). Tarsius tumpara: A new tarsier species from Siau island, North Sulawesi. Primate Conservation, 23, 55–64.CrossRefGoogle Scholar
  47. Sillero-Zubiri, C., Gottelli, D., & Macdonald, D. W. (1996). Male philopatry, extra-pack copulations and inbreeding avoidance in Ethiopian wolves (Canis simensis). Behavioral Ecology and Sociobiology, 38, 331–340. doi: 10.1007/s002650050249.CrossRefGoogle Scholar
  48. Smuts, B. B., Cheney, D. L., Seyfarth, R. M., Wrangham, R. W., & Struhsaker, T. T. (1987). Primate Societies. Chicago: University of Chicago Press.Google Scholar
  49. Symington, M. M. (1990). Fission-fusion social organization in Ateles and Pan. International Journal of Primatology, 11, 47–61. doi: 10.1007/BF02193695.CrossRefGoogle Scholar
  50. van Schaik, C. P., & Kappeler, P. M. (1997). Infanticide risk and the evolution of male-female association in primates. Proceedings of the Royal Society of London. Series B. Biological Sciences, 264, 1687–1694. doi: 10.1098/rspb.1997.0234.CrossRefGoogle Scholar
  51. Wittenberger, J. F., & Tilson, R. L. (1980). The evolution of monogamy: Hypotheses and evidence. Annual Review of Ecology and Systematics, 11, 197–232. doi: 10.1146/ Scholar
  52. Wrangham, R. W. (1987). Evolution of social structure. In B. B. Smuts, D. L. Cheney, R. M. Seyfarth, R. W. Wrangham, & T. T. Struhsaker (Eds.), Primate Societies (pp. 282–296). Chicago: University of Chicago Press.Google Scholar
  53. Wright, P. C. (1990). Patterns of paternal care in primates. International Journal of Primatology, 11, 89–102. doi: 10.1007/BF02192783.CrossRefGoogle Scholar
  54. Zietkiewicz, E., Richer, C., & Labuda, D. (1999). Phylogenetic affinities of tarsier in the context of primate Alu repeats. Molecular Phylogenetics and Evolution, 11, 77–83. doi: 10.1006/mpev.1998.0564.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Christine Driller
    • 1
  • Dyah Perwitasari-Farajallah
    • 2
    • 3
  • Hans Zischler
    • 1
  • Stefan Merker
    • 1
  1. 1.Institute of AnthropologyJohannes-Gutenberg University of MainzMainzGermany
  2. 2.Primate Research CenterBogor Agricultural UniversityBogorIndonesia
  3. 3.Department of Biology, Faculty of Mathematics and Natural SciencesBogor Agricultural UniversityBogorIndonesia

Personalised recommendations