Advertisement

International Journal of Primatology

, Volume 29, Issue 6, pp 1549–1566 | Cite as

Cerebrospinal Fluid Monoaminergic Metabolites in Wild Papio anubis and P. hamadryas are Concordant with Taxon-specific Behavioral Ontogeny

  • Clifford J. JollyEmail author
  • Jane E. Phillips-Conroy
  • Jay R. Kaplan
  • J. John Mann
Article

Abstract

We used a cross-sectional sample to compare ontogenetic trajectories in the concentrations of monoamine neurotransmitter metabolites in cerebrospinal fluid of wild anubis (Papio anubis, n = 49) and hamadryas (P. hamadryas, n = 54) baboons to test the prediction that they would differ, especially in males, in association with their distinct behavioral ontogenies. Values of all 3 metabolites [3-methoxy-4-hydroxyphenylglycol (MHPG), the norepinephrine metabolite; 5-hydroxyindoleacetic acid (5-HIAA), the serotonin metabolite; and homovanillic acid (HVA), the dopamine metabolite] declined consistently with dentally-calibrated maturation, and few taxon-related differences were apparent among juveniles. Adult females were too few for adequate comparison, but a discriminant function suggested that they might differ by taxon. Adult males of the 2 species differed strikingly from juveniles and from each other. Contrary to our initial hypothesis, adult male anubis had significantly lower HVA and MHPG, and higher 5-HIAA levels, than predicted from the overall, age-related trend, and MHPG continued to decline with age among adults. As young adults, male hamadryas had low 5-HIAA and a high HVA/5-HIAA ratio, while older males [normatively one-male unit (OMU) leaders] showed a reversal in the trend, with 5-HIAA rising and the HVA/5-HIAA ratio tending to fall. We speculate that the results are related to the dispersing and philopatric ontogenies of anubis and hamadryas males, respectively. Adult male anubis, whose fitness depends on building social networks with nonkin, have high relative serotonin activity, commonly associated with greater social circumspection and skill. Young adult male hamadryas, living among agnatic kin and mating opportunistically, exhibit low 5-HIAA levels, generally associated with impulsivity and social irresponsibility. This reverses as a male approaches the age at which he is normatively the leader of a one-male unit (OMU), and his fitness depends on his maintaining stable relationships with other leaders and with females.

Keywords

baboon cerebrospinal fluid monoamine metabolites ontogeny Papio anubis Papio hamadryas 

Notes

Acknowledgments

We thank the General Manager, Ethiopian Wildlife Conservation Organization, the Warden and Staff of the Awash National Park, and the Biology Department, Addis Ababa University, for permitting and facilitating our research; Ato Minda Wondorfa for his many logistical contributions; the many graduate students who assisted in the field; Dewayne Cairnes and Melissa Ayers for their skilled collection of CSF; Dr. Yung-Yu Huang for expert assistance with the monoamine assays. Grants SBR9615150 to J. E. Phillips-Conroy and C. J. Jolly, HL45666 and HL79421 to J. R. Kaplan, and MH62185 to J. J. Mann supported this research.

References

  1. Abegglen, J. (1984). On socialization in hamadryas baboons: A field study. East Brunswick, NJ: Bucknell University Press.Google Scholar
  2. Alberts, S., & Altmann, J. (2001). Immigration and hybridization patterns of yellow and anubis baboons in and around Amboseli, Kenya. American Journal of Primatology, 53, 139–154. doi: 10.1002/ajp.1.PubMedCrossRefGoogle Scholar
  3. Berman, M., Kavoussi, R., Coccaro, E., & Action, N. (1997). Neurotransmitter correlates of human aggression. In D. M. Stouff, J. Breiling, & J. D. Maser (Eds.), Handbook of antisocial behavior (pp. 305–313). New York: John Wiley & Sons.Google Scholar
  4. Botchin, M. B., Kaplan, J. R., Manuck, S. B., & Mann, J. J. (1993). Low versus high prolactin responders to fenfluramine challenge: marker of behavioral differences in adult male cynomolgus macaques. Neuropsychopharmacology, 9, 93–99.PubMedGoogle Scholar
  5. Brown, G., Ebert, M., Goyer, P., Jimerson, D., Klein, W., Bunney, W., & Goodwin, F. (1982). Aggression, suicide, and serotonin: relationships to CSF amine metabolites. The American Journal of Psychiatry, 139, 741–746.PubMedGoogle Scholar
  6. Cloninger, C. (1994). Temperament and personality. Findings and Current Opinion in Cognitive Neuroscience, 4, 266–273.Google Scholar
  7. Fairbanks, L. A., Fontenot, M. B., Phillips-Conroy, J. E., Jolly, C. J., Kaplan, J. R., & Mann, J. J. (1999). CSF monoamines, age and impulsivity in wild grivet monkeys (Cercopithecus aethiops aethiops). Brain, Behavior and Evolution, 53, 305–312. doi: 10.1159/000006601.PubMedCrossRefGoogle Scholar
  8. Fairbanks, L., Jorgenson, G., Huff, A., Blau, K., Hung, Y., & Mann, J. (2004). Adolescent impulsivity predicts adult dominance attainment in male vervet monkeys. American Journal of Primatology, 64, 1–17. doi: 10.1002/ajp.20057.PubMedCrossRefGoogle Scholar
  9. Geracioti, T., Keck, P., Ekhator, N., West, S., Baker, D., Hill, K., Bruce, A., & Wortman, M. (1998). Continuous covariability of dopamine and serotonin metabolites in human cerebrospinal fluid. Biological Psychiatry, 44, 228–233. doi: 10.1016/S0006-3223(97)90372-3.PubMedCrossRefGoogle Scholar
  10. Higley, J., Mehlman, P., Taub, D., Higley, S., Suomi, S., Vickers, J., & Linnoila, M. (1992a). Cerebrospinal fluid monoamine and adrenal correlates of aggression in free-ranging rhesus monkeys. Archives of General Psychiatry, 49, 436–441.PubMedGoogle Scholar
  11. Higley, J., Suomi, S., & Linnoila, M. (1992b). A longitudinal assessment of CSF monoamine metabolite and plasma cortisol concentrations in young rhesus monkeys. Biological Psychiatry, 32, 127–145. doi: 10.1016/0006-3223(92)90016-S.PubMedCrossRefGoogle Scholar
  12. Howell, S., Westergard, G., Hoos, B., Chayanne, T., Shoaf, S., Cleveland, , et al. (2007). Serotonergic influences on life-history outcomes in free-ranging male rhesus macaques. American Journal of Primatology, 69, 851–865. doi: 10.1002/ajp.20369.PubMedCrossRefGoogle Scholar
  13. Jolly, C., & Phillips-Conroy, J. (2006). Testicular size, developmental trajectories, and male life history strategies in four baboon taxa. In L. Swedell, & S. Leigh (Eds.), Reproduction and fitness in Baboons: Behavioral, ecological and life history perspectives (pp. 257–285). New York: Springer.Google Scholar
  14. Kahn, R., Davidson, M., Knott, P., Stern, R., Apter, S., & Davis, K. (1993). Effect of neuroleptic medication on cerebrospinal fluid monoamine metabolite concentrations in schizophrenia. Serotonin-dopamine interactions as a target for treatment. Archives of General Psychiatry, 50, 599–605.PubMedGoogle Scholar
  15. Kaplan, J. R., Phillips-Conroy, J., Fontenot, M. B., Jolly, C. J., Fairbanks, L. A., & Mann, J. J. (1999). Cerebrospinal fluid monoaminergic metabolites differ in wild anubis and hybrid (Anubis hamadryas) baboons: possible relationships to life history and behavior. Neuropsychopharmacology, 20, 517–524. doi: 10.1016/S0893-133X(98)00078-5.PubMedCrossRefGoogle Scholar
  16. Klein, T., Neumann, J., Reuter, M., Hennig, J., von Cramon, D., & Ullsperger, M. (2007). Genetically determined differences in learning from errors. Science, 318, 1642. doi: 10.1126/science.1145044.PubMedCrossRefGoogle Scholar
  17. Knutson, B., Wolkowitz, O., Cole, S., Chan, T., Moore, E., Johnson, R., et al. (1998). Selective alteration of personality and social behavior by serotonergic intervention. The American Journal of Psychiatry, 155, 373–379.PubMedGoogle Scholar
  18. Kobayashi, K., Imazu, Y., Kawabata, M., & Shohmori, T. (1987). Effect of longterm storage on monoamine metabolite levels in human cerebrospinal fluid. Acta Medica Okayama, 41, 179–181.PubMedGoogle Scholar
  19. Kummer, H. (1968). Social organization of hamadryas baboons: A field study. Basel: New Karger.Google Scholar
  20. Lewine, R., Risch, S., Risby, E., Stipetic, M., Jwart, R., Eccard, M., et al. (1991). Lateral ventricle-brain ratio and balance between CSF HVA and 5–HIAA in schizophrenia. The American Journal of Psychiatry, 148, 1189–1194.PubMedGoogle Scholar
  21. Mehlman, P., Higley, J., Fernald, B., Sallee, F., Suomi, S., & Linnoila, M. (1997). CSF 5–HIAA, testosterone, and sociosexual behaviors in free-ranging male rhesus macaques in the mating season. Psychiatry Research, 72, 89–102. doi: 10.1016/S0165-1781(97)00084-X.PubMedCrossRefGoogle Scholar
  22. Mehlman, P., Westergaard, G., Suomi, S., & Higley, J. (1999). CSF 5–HIAA and aggression in female macaque monkeys: Species and interindividual differences. Psychopharmacology, 146, 440–446. doi: 10.1007/PL00005489.PubMedCrossRefGoogle Scholar
  23. Mulder, R. (1992). The biology of personality. The Australian and New Zealand Journal of Psychiatry, 26, 364–376. doi: 10.3109/00048679209072059.PubMedCrossRefGoogle Scholar
  24. Nagel, U. (1973). A comparison of anubis baboons, hamadryas baboons and their hybrids at a species border in Ethiopia. Folia Primatologica, 19, 104–165. doi: 10.1159/000155536.CrossRefGoogle Scholar
  25. Nair, H., & Young, L. (2006). Vasopressin and pair-bond formation: Genes to brain to behavior. Physiology (Bethesda, MD), 21, 146–152. doi: 10.1152/physiol.00049.2005.Google Scholar
  26. Oades, R. (2002). Dopamine may be ‘hyper’ with respect to noradrenaline metabolism, but ‘hypo’with respect to serotonin metabolism in children with attention-deficit hyperactivity disorder. Behavioural Brain Research, 130, 97–102. doi: 10.1016/S0166-4328(01)00440-5.PubMedCrossRefGoogle Scholar
  27. Phillips-Conroy, J., & Jolly, C. (1986). Changes in the structure of the baboon hybrid zone in the Awash National Park, Ethiopia. American Journal of Physical Anthropology, 71, 337–350. doi: 10.1002/ajpa.1330710309.CrossRefGoogle Scholar
  28. Phillips-Conroy, J., & Jolly, C. (1988). Dental eruption schedules of wild and captive baboons. American Journal of Primatology, 15, 17–29. doi: 10.1002/ajp.1350150104.CrossRefGoogle Scholar
  29. Phillips-Conroy, J., Bergman, T., & Jolly, C. (2000). Quantitative assessment of occlusal wear and age estimation in Ethiopian and Tanzanian baboons. In C. Jolly, & P. Whitehead (Eds.), Old world monkeys (pp. 321–340). Cambridge: Cambridge University Press.Google Scholar
  30. Pusey, A., & Packer, C. (1987). Dispersal and philopatry. In B. Smuts, D. Cheney, R. W. Seyfarth, & T. Struhsaker (Eds.), Primate societies (pp. 250–266). Chicago: University of Chicago Press.Google Scholar
  31. Rao, F., Wessel, J., Wen, G., Zhang, L., Rana, B., Kennedy, B., et al. (2007). Renal albumin excretion: Twin studies identify influences of heredity, environment, and adrenergic pathway polymorphism. Hypertension, 49, 1015. doi: 10.1161/HYPERTENSIONAHA.106.081679.PubMedCrossRefGoogle Scholar
  32. Rogers, J., Martin, L. J., Comuzzie, A. G., Mann, J. J., Manuck, S. B., Leland, M., et al. (2004). Genetics of monoamine metabolites in baboons: Overlapping sets of genes influence levels of 5–hydroxyindolacetic acid, 3–hydroxy-4–methoxyphenylglycol, and homovanillic acid. Biological Psychiatry, 55, 739–744. doi: 10.1016/j.biopsych.2003.12.017.PubMedCrossRefGoogle Scholar
  33. Rosenblum, L., Smith, E., Altemus, M., Scharf, B., Owens, M., Nemeroff, C., et al. (2002). Differing concentrations of corticotropin-releasing factor and oxytocin in the cerebrospinal fluid of bonnet and pigtail macaques. Psychoneuroendocrinology, 27, 651–660. doi: 10.1016/S0306-4530(01)00056-7.PubMedCrossRefGoogle Scholar
  34. Roy, A., Agren, H., PIickar, D., Linnoila, M., Doran, A., Cutler, N., et al. (1986). Reduced CSF concentrations of homovanillic acid and homovanillic acid to 5–hydroxyindoleacetic acid ratios in depressed patients: relationship to suicidal behavior and dexamethasone nonsuppression. The American Journal of Psychiatry, 143, 1539–1545.PubMedGoogle Scholar
  35. Scheinin, M., Chang, W. H., Kirk, K. L., & Linnoila, M. (1983). Simultaneous determination of 3–methoxy-4-hydroxyphenylglycol, 5-hydroxyindoleacetic acid, and homovanillic acid in cerebrospinal fluid with high-performance liquid chromatography using electrochemical detection. Analytical Biochemistry, 131, 246–253. doi: 10.1016/0003-2697(83)90162-8.PubMedCrossRefGoogle Scholar
  36. Soderstrom, H., Blennow, K., Sjodin, A., & Forsman, A. (2003). New evidence for an association between the CSF HVA: 5-HIAA ratio and psychopathic traits. British Medical Journal, 74, 918.Google Scholar
  37. Spence, S. (2004). What’s it all about, Alfie? Antisocial males in the early films of Sir Michael Caine. British Medical Journal, 30, 27.Google Scholar
  38. Suomi, S. (2005). Aggression and social behaviour in rhesus monkeys. Novartis Foundation Symposium, 268, 216–222. doi: 10.1002/0470010703.ch15.PubMedCrossRefGoogle Scholar
  39. Suomi, S. (2006). Risk, resilience, and gene x environment interactions in rhesus monkeys. Annals of the New York Academy of Sciences, 1094, 52. doi: 10.1196/annals.1376.006.PubMedCrossRefGoogle Scholar
  40. Swedell, L. (2006). Strategies of sex and survival in Hamadryas baboons: Through a female lens. Upper Saddle River, NJ: Pearson Prentice-Hall.Google Scholar
  41. Vaughn, D., Coleman, E., Simpson, S., & Satjawatcharaphong, C. (1988). Analysis of neurotransmitter metabolite concentrations in canine cerebrospinal fluid. American Journal of Veterinary Medical Research, 49, 1302–1306.Google Scholar
  42. Wang, Z., Young, L., De Vries, G., & Insel, T. (1998). Voles and vasopressin: A review of molecular, cellular, and behavioral studies of pair bonding and paternal behaviors. Progress in Brain Research, 119, 483–499. doi: 10.1016/S0079-6123(08)61589-7.PubMedCrossRefGoogle Scholar
  43. Westergaard, G., Mehlman, P., Suomi, S., & Higley, J. (1999). CSF 5–HIAA and aggression in female macaque monkeys: Species and interindividual differences. Psychopharmacology, 146, 440–446. doi: 10.1007/PL00005489.PubMedCrossRefGoogle Scholar
  44. Zuckerman, M. (1991). Psychobiology of personality. New York: Cambridge, Cambridge University Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Clifford J. Jolly
    • 1
    Email author
  • Jane E. Phillips-Conroy
    • 2
    • 3
  • Jay R. Kaplan
    • 4
    • 5
  • J. John Mann
    • 6
    • 7
  1. 1.Department of AnthropologyNew York UniversityNew YorkUSA
  2. 2.Department of Anatomy and NeurobiologyWashington University Medical SchoolSt. LouisUSA
  3. 3.Department of AnthropologyWashington UniversitySt. LouisUSA
  4. 4.Department of Pathology (Comparative Medicine)Wake Forest University School of MedicineWinston-SalemUSA
  5. 5.Wake Forest University Primate CenterWake Forest University School of MedicineWinston-SalemUSA
  6. 6.Department of Molecular Imaging and NeuropathologyNew York State Psychiatric InstituteNew YorkUSA
  7. 7.Department of PsychiatryColumbia UniversityNew YorkUSA

Personalised recommendations