International Journal of Primatology

, Volume 29, Issue 6, pp 1455–1466 | Cite as

It’s Tough Out There: Variation in the Toughness of Ingested Leaves and Feeding Behavior Among Four Colobinae in Vietnam

  • B. W. Wright
  • L. Ulibarri
  • J. O’Brien
  • B. Sadler
  • R. Prodhan
  • H. H. Covert
  • T. Nadler
Article

Abstract

Colobines are similar in their exploitation of a high percentage of leaf matter. However, this observation obfuscates interesting differences among genera of Southeast Asian colobines in morphology and behavior that may be reflected in the degree to which they rely on mastication or gut volume and gut retention time when ingesting and digesting leaves. We detail the use of a laboratory-based method to measure the mechanical properties of foods selected and processed by 4 captive species of Southeast Asian Colobinae —Pygathrix nemaeus, Pygathrix cinerea, Trachypithecus delacouri, and Trachypithecus laotum hatinhensis— at the Endangered Primate Rescue Center (EPRC), Vietnam. We also detail a field method that quantifies chewing rates and chewing behavior via a consumer-grade video camera and laptop computer. Observations in the captive setting permit a degree of experimental control that is not possible in the wild, and the location of the EPRC in the primates’ habitat country permitted us to provide leaves that they encounter and eat in the wild. We collected toughness data with a portable tester designed by Lucas et al. The average toughness of selected leaves does not differ among the taxa, nor does the length of time spent chewing foods. However, there are differences in feeding rate, with Trachypithecus spp. chewing foods twice as fast as Pygathrix spp. Our findings suggest that Trachypithecus spp. emphasize comminution of food by mastication, while Pygathrix spp. emphasize the comminution of leaf matter in the stomach. The hypothesis is supported by data on molar size, gut mass, and gut morphology. We provide new insights into dietary variation among primate species and detail methods that are typically conducted only in a laboratory setting. We augment the findings with additional data on activity, feeding rates, and tooth morphology.

Keywords

chewing rates food material properties portable mechanical tester Southeast Asian colobines toughness 

References

  1. Agrawal, K. R., Lucas, P. W., Prinz, J. F., & Bruce, I. C. (1997). Mechanical properties of foods responsible for resisting food breakdown in the human mouth. Archives of Oral Biology, 42, 1–9. doi:10.1016/S0003-9969(96)00102-1.PubMedCrossRefGoogle Scholar
  2. Ashby, M. F. (1992). Materials Selection in Mechanical Design. Oxford: Pergamon Press.Google Scholar
  3. Battley, F. B., & Theunis, P. (2005). Adaptive interplay between feeding ecology and features of the digestive tract in birds. In J. M. Starck, & T. Wang (Eds.), Physiological and Ecological Adaptations to Feeding in Vertebrates pp. 202–228. Enfield: Science Publications.Google Scholar
  4. Bertram, J. E. A. (2004). New perspectives on brachiation mechanics. Yearbook of Physical Anthropology, 47, 100–117. doi:10.1002/ajpa.20156.CrossRefGoogle Scholar
  5. Caton, M. J. (1998). The morphology of the gastrointestinal tract of Pygathrix nemaeus. In N. G. Jablonski (Ed.), Natural History of the Doucs and Snub-nosed Monkeys (pp. 129–149). Singapore: World Scientific.Google Scholar
  6. Caton, M. J. (1999). Digestive strategy of the Asian colobine genus Trachypithecus. Primates, 40, 311–325. doi:10.1007/BF02557555.CrossRefGoogle Scholar
  7. Cheng, K. J., Fay, J. P., Howarth, R. E., & Costerton, J. W. (1980). Sequence of events in the digestion of fresh legume leaves by rumen bacteria. Applied and Environmental Microbiology, 40, 613–625.PubMedGoogle Scholar
  8. Darvell, B. W., Lee, P. K. D., Yuen, T. D. B., & Lucas, P. W. (1996). A portable fracture toughness tester for biological materials. Measurement Science and Technology, 7, 954–962.CrossRefGoogle Scholar
  9. Dominy, N. J., Lucas, P. W., Osorio, D., & Yamashita, N. (2001). The sensory ecology of primate food perception. Evolutionary Anthropology, 10, 171–186. doi:10.1002/evan.1031.CrossRefGoogle Scholar
  10. Fleagle, J. G. (1999). Primate Adaptation and Evolution. San Diego: Academic Press.Google Scholar
  11. Fukui, A. (2003). Relationships between seed retention time in bird’s gut and fruit characteristics. Ornithological Science, 2, 41–48. doi:10.2326/osj.2.41.CrossRefGoogle Scholar
  12. Grajal, A., Strahl, S. D., Parra, R., Dominguez, M. G., & Neher, A. (1989). Foregut Fermentation in the Hoatzin, a neotropical leaf-eating bird. Science, 245, 1236–1238. doi:10.1126/science.245.4923.1236.PubMedCrossRefGoogle Scholar
  13. Jablonski, N. G., Ruliang, P., & Chaplin, G. (1998). Mandibular morphology of the doucs and snub-nosed monkeys in relation to diet. In N. G. Jablonski (Ed.), Natural History of the Doucs and Snub-nosed Monkeys (pp. 105–128). Singapore: World Scientific.Google Scholar
  14. King, S. J., Arrigo-Nelson, S. J., Pochron, S. T., Semprebon, G. M., Godfrey, L. R., Wright, P. C., et al. (2005). Dental senescence in a long-lived primates links infant survival to rainfall. Proceedings of the National Academy of Sciences of the United States of America, 102, 16579–16583. doi:10.1073/pnas.0508377102x.PubMedCrossRefGoogle Scholar
  15. Kirkpatrick, R. C. (1998). Ecology and behavior in snub-nosed and douc langurs. In N. G. Jablonski (Ed.), Natural History of the Doucs and Snub-nosed Monkeys (pp. 155–190). Singapore: World Scientific.Google Scholar
  16. Korzoun, L. P., Erard, C., Gasc, J.-P., & Dzerzhinsky, F. J. (2003). Adaptation of the Hoatzin (Opisthocomus hoazin) to folivory. Distinctive morphological and functional features of its bill and hyoid apparatus. Comptes Rendus Biologies, 326, 75–94. doi:10.1016/S1631-0691(03)00007-6.PubMedCrossRefGoogle Scholar
  17. Logan, M., & Sanson, D. G. (2002). The effect of tooth wear on feeding behaviour in free-ranging koalas (Phascolarctos cinereus). Journal of Zoology, 256, 63–69.Google Scholar
  18. Lucas, P. W. (2004). Dental Functional Morphology: How Teeth Work. New York: Cambridge University Press.Google Scholar
  19. Lucas, P. W., Beta, T., Darvell, B. W., Dominy, N. J., Essackjee, H. C., Lee, P. K. D., et al. (2001). Field kit to characterize physical, chemical and spatial aspects of potential primate foods. Folia Primatologica, 72, 11–25. doi:10.1159/000049914.CrossRefGoogle Scholar
  20. Lucas, P. W., Darvell, B. W., Lee, P. K. D., Yuen, T. D. B., & Choong, M. F. (1995). The toughness of plant cell walls. Philosophical Transactions of the Royal Society of London, 348, 363–372. doi:10.1098/rstb.1995.0074.CrossRefGoogle Scholar
  21. Lucas, P. W., Prinz, J. F., & Agrawal, K. R. (2002). Food physics and oral physiology. Food Quality and Preferences, 13, 203–213.CrossRefGoogle Scholar
  22. Lucas, P. W., Turner, I. M., Dominy, N. J., & Yamashita, N. (2000). Mechanical defences to herbivory. Annals of Botany, 86, 913–920. doi:10.1006/anbo.2000.1261.CrossRefGoogle Scholar
  23. Nadler, T., Streicher, U., & Long, H. T. (2004). Conservation of Primates in Vietnam. Frankfurt: Frankfurt Zoological Society.Google Scholar
  24. O’Grady, P. O., Morando, M., Avila, L., & Dearing, M. D. (2005). Correlating diet and digestive tract specialization: Examples from the lizard family Liolaemidae. Zoology (Jena, Germany), 108, 201–210. doi:10.1016/j.zool.2005.06.002.Google Scholar
  25. Pafilis, P., Foufopoulos, J., Poulakakis, N., Lymberakis, P., & Valakos, E. (2007). Digestive performance in five Mediterranean lizard species: Effects of temperature and insularity. Journal of Comparative Physiology, 177, 49–60.Google Scholar
  26. Rosenberger, A. L. (1992). Evolution of feeding niches in New World monkeys. American Journal of Physical Anthropology, 88, 525–562. doi:10.1002/ajpa.1330880408.PubMedCrossRefGoogle Scholar
  27. Stevens, N. J., Wright, K. A., Covert, H. H., & Nadler, T. (2008). Tail ostures of four quadrupedal leaf monkeys (Pygathrix nemaeus, P. cinerea, Trachypithecus delacouri and T. hatinhensis) at the Endangered Primate Rescue Center, Cuc Phuong, National Park, Vietnam. Vietnamese Journal of Primatology, 1, 13–24.Google Scholar
  28. Van Soest, P. J. (1994). Nutrient Ecology of the Ruminant (2nd ed.). Ithaca, NY: Cornell University Press.Google Scholar
  29. Vincent, J. F. V. (1992). Biomechanics - Materials: A Practical Approach. IRL Press, Oxford.Google Scholar
  30. Waterman, P. G., & Kool, K. M. (1994). Colobine food selection and plant chemistry. In A. GlynDavies, & J. F. Oates (Eds.), Colobine Monkeys: Their Ecology, Behaviour and Evolution. Cambridge, UK: Cambridge University Press.Google Scholar
  31. Williams, S., Wright, B. W., Truong, V. D., & Vinyard, C. J. (2005). The mechanical properties of foods used in experimental studies of primate masticatory function. American Journal of Primatology, 67, 329–346. doi:10.1002/ajp.20189.PubMedCrossRefGoogle Scholar
  32. Wright, B. W. (2005). Ecological Distinctions in Diet, Food Toughness, and Masticatory Anatomy in a Community of Six Neotropical Primates in Guyana, South America, Ph.D. dissertation, Urbana-Champaign: University of Illinois, 258 pp.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • B. W. Wright
    • 1
  • L. Ulibarri
    • 3
  • J. O’Brien
    • 3
  • B. Sadler
    • 2
  • R. Prodhan
    • 2
  • H. H. Covert
    • 3
  • T. Nadler
    • 4
  1. 1.Department of AnatomyKansas City University of Medicine and BiosciencesKansas CityUSA
  2. 2.Department of AnthropologyThe George Washington UniversityWashingtonUSA
  3. 3.Department of AnthropologyUniversity of ColoradoBoulderUSA
  4. 4.Endangered Primate Rescue CenterNho Quan DistrictVietnam

Personalised recommendations