International Journal of Primatology

, Volume 29, Issue 4, pp 823–844

Life History and Reproductive Strategies of Khao Yai Hylobates lar: Implications for Social Evolution in Apes

Article

Abstract

Among primates, great apes have the most extended life histories and they also appear socially specialized because of their flexible association patterns and sociosexual relationships. Researchers have hypothesized that such subtle social commonalities in combination with a slow life pace lead to great apes advanced cognition. Small apes, in contrast to great apes, are commonly believed to be socially inflexible, and little comparative life history data exist for wild populations. We investigated how the small white-handed gibbon (Hylobates lar) fits into a great ape life history and sociality framework. We followed the life histories of adults in 12 groups over ca. 18 yr at Khao Yai National Park, Thailand. Results demonstrate that the life histories of white-handed gibbons closely resembled those of other apes. Mean female age at first reproduction was late (11.06 yr), and mean interbirth interval (41 ± 9.1 mo) and juvenile period (9.5 ± 1.8 yr) were long. Multimale grouping of 2 adult males and 1 female was a common alternative (21.2% groups) to the traditional hylobatid pair-living social organization in our population. Female sexual partnerships include a variety of polyandrous mating strategies for both pair-living females and females in multimale groups. From our long-term study a picture of social complexity materializes that resembles social complexities in other apes. In conclusion, we infer that gibbons share commonalities postulated to unite great apes based on similar life histories and very flexible social and sexual relationships.

Keywords

age at first reproduction interbirth interval mating behavior polyandry white-handed gibbon 

References

  1. Aiello, C. L., & Dunbar, R. (1993). Neocortex size, group size and the evolution of language. Current Anthropology, 34, 184–193. doi:10.1086/204160.CrossRefGoogle Scholar
  2. Aiello, C. L., & Wheeler, P. (1995). The expensive-tissue hypothesis: The brain and the digestive system in human and primate evolution. Current Anthropology, 36, 199–221. doi:10.1086/204350.CrossRefGoogle Scholar
  3. Altmann, J., & Alberts, S. C. (2005). Growth rates in a wild primate population: Ecological influences and maternal effects. Behavioral Ecology and Sociobiology, 57, 490–501. doi:10.1007/s00265-004-0870-x.CrossRefGoogle Scholar
  4. Barelli, C., Heistermann, M., Boesch, C., & Reichard, U. H. (2007). Sexual swellings in wild white-handed gibbon females (Hylobates lar) indicate the probability of ovulation. Hormones and Behavior, 51, 221–230. doi:10.1016/j.yhbeh.2006.10.008.PubMedCrossRefGoogle Scholar
  5. Barelli, C., Heistermann, M., Boesch, C., & Reichard, U. H. (2008a). Mating patterns and sexual swellings in pair-living and multimale groups of wild white-handed gibbons, Hylobates lar. Animal Behaviour, 75, 991–1001. doi:10.1016/j.anbehav.2007.08.012.CrossRefGoogle Scholar
  6. Barelli, C., Boesch, C., Heistermann, M., & Reichard, U. H. (2008b). Female white-handed gibbons (Hylobates lar) lead group movements and have priority of access to food resources. Behaviour, 145, 965–981. doi:10.1163/156853908784089243.CrossRefGoogle Scholar
  7. Bartlett, T. Q. (2003). Intragroup and intergroup social interactions in white-handed gibbons. International Journal of Primatology, 24, 239–259. doi:10.1023/A:1023088814263.CrossRefGoogle Scholar
  8. Bartlett, T. Q. (2007). The hylobatidae small apes of Asia. In C. J. Campbell, A. Fuentes, K. C. MacKinnon, M. Panger, & S. K. Bearder (Eds.), Primates in perspective (pp. 274–289). Oxford: Oxford University Press.Google Scholar
  9. Begun, D. R. (2004). Enhanced cognitive capacity as a contingent fact of hominid phylogeny. In A. Russon, & D. R. Begun (Eds.), The Evolution of thought evolutionary origins of great ape intelligence (pp. 15–30). Cambridge, UK: Cambridge University Press.Google Scholar
  10. Begun, D. R., & Kordos, L. (2004). Cranial evidence of the evolution of intelligence in fossil apes. In A. Russon, & D. R. Begun (Eds.), The evolution of thought evolutionary origins of great ape intelligence (pp. 260–279). Cambridge, UK: Cambridge University Press.Google Scholar
  11. Boesch, C., & Boesch-Achermann, H. (2000). The chimpanzee of the Taï forest: Behavioral ecology and evolution. Oxford: Oxford University Press.Google Scholar
  12. Borries, C., Koenig, A., & Winkler, P. (2001). Variation of life history traits and mating patterns in female langur monkeys (Semnopithecus entellus). Behavioral Ecology and Sociobiology, 50, 391–402. doi:10.1007/s002650100391.CrossRefGoogle Scholar
  13. Brockelman, W. Y., Reichard, U., Treesucon, U., & Raemaekers, J. J. (1998). Dispersal, pair formation and social structure in gibbons (Hylobates lar). Behavioral Ecology and Sociobiology, 42, 329–339. doi:10.1007/s002650050445.CrossRefGoogle Scholar
  14. Byrne, W. R. (2004). The manual skills and cognition that lie behind hominid tool use. In A. Russon, & D. R. Begun (Eds.), The evolution of thought: Evolutionary origins of great ape intelligence (pp. 31–44). Cambridge, UK: Cambridge University Press.Google Scholar
  15. Carpenter, C. R. (1940). A field study in Siam of the behavior and social relations of the gibbon (Hylobates lar). Comparative Psychology Monographs, 84, 1–212.Google Scholar
  16. Carter, M. L., Pontzer, H., Wrangham, R. W., & Peterhans, J. K. (2008). Skeletal pathology in Pan troglodytes schweinfurthii in Kibale National Park, Uganda. American Journal of Physical Anthropology, 135, 389–403. doi:10.1002/ajpa.20758.PubMedCrossRefGoogle Scholar
  17. Charnov, E. L. (1991). Evolution of life history variation among female mammals. Proceedings of the National Academy of Sciences of the United States of America, 88, 1134–1137. doi:10.1073/pnas.88.4.1134.PubMedCrossRefGoogle Scholar
  18. Charnov, E. L., & Berrigan, D. (1993). Why do female primates have such long lifespans and so few babies? Or life in the slow lane. Evolutionary Anthropology, 1, 191–194. doi:10.1002/evan.1360010604.CrossRefGoogle Scholar
  19. Chatterjee, H. J. (2006). Phylogeny and biogeography of gibbons: A dispersal-vicariance analysis. International Journal of Primatology, 27, 699–712. doi:10.1007/s10764-006-9044-1.CrossRefGoogle Scholar
  20. Chivers, D. J. (1971). Spatial relations within the Siamang group. Proceedings of the 3rd Congress of Primatology, 3, 14–21.Google Scholar
  21. Chivers, D. J., & Raemaekers, J. J. (1980). Long-term changes in behaviour. In D. J. Chivers (Ed.), Malayan forest primates: Ten years’ study in tropical rain forest (pp. 209–260). New York: Plenum Press.Google Scholar
  22. Cords, M., & Aureli, F. (2003). Patterns of reconciliation among juvenile long-tailed macaques. In M. E. Pereira, & L. A. Fairbanks (Eds.), Juvenile primates (pp. 271–284). New York: Oxford University Press.Google Scholar
  23. Cunningham, C., Anderson, J. R., & Mootnick, A. R. (2006). Object manipulation to obtain a food reward in hoolock gibbons, Bunopithecus hoolock. Animal Behaviour, 71, 621–629. doi:10.1016/j.anbehav.2005.05.013.CrossRefGoogle Scholar
  24. Deacon, T. W. (1997). The symbolic species: The co-evolution of language and the brain. New York: W. W. Norton.Google Scholar
  25. Deaner, R. O., Barton, R. A., & van Schaik, C. P. (2003). Primate brains and life histories: Renewing the connection. In P. M. Kappeler, & M. E. Pereira (Eds.), Primate life histories and socioecology (pp. 233–265). Chicago: Chicago University Press.Google Scholar
  26. de Waal, F. B. M. (1993). Codevelopment of dominance relations and affiliative bonds in rhesus monkeys. In M. E. Pereira, & L. A. Fairbanks (Eds.), Juvenile primates (pp. 259–270). Oxford: Oxford University Press.Google Scholar
  27. Di Fiore, A., & Suarez, S. A. (2007). Route-based travel and shared routes in sympatric spider and woolly monkeys: Cognitive and evolutionary implications. Animal Cognition, 10, 317–329. doi:10.1007/s10071-006-0067-y.PubMedCrossRefGoogle Scholar
  28. Dunbar, R. I. M. (1992). Neocortex size as a constraint on group size in primates. Journal of Human Evolution, 22, 469–293. doi:10.1016/0047-2484(92)90081-J.CrossRefGoogle Scholar
  29. Dunbar, R. I. M. (2003). The social brain: Mind, language, and society in evolutionary perspective. Annual Review of Anthropology, 32, 163–181. doi:10.1146/annurev.anthro.32.061002.093158.CrossRefGoogle Scholar
  30. Ellefson, J. O. (1974). A natural history of white-handed gibbons in the Malayan Peninsular. In D. M. Rumbaugh (Ed.), Gibbon and Siamang, natural history, social behavior, reproduction, vocalizations, prehension (vol. 3, (pp. 1–136)). Basel: Karger.Google Scholar
  31. Fuentes, A. (2000). Hylobatid communities: Changing views on pair bonding and social organization in hominoids. Yearbook of Physical Anthropology, 43, 33–60. doi:10.1002/1096-8644(2000)43:31+<33::AID-AJPA3>3.0.CO;2-D.CrossRefGoogle Scholar
  32. Galdikas, B. M. F., & Wood, J. W. (1990). Birth spacing patterns in humans and apes. American Journal of Physical Anthropology, 83, 185–191. doi:10.1002/ajpa.1330830207.PubMedCrossRefGoogle Scholar
  33. Gebo, D. L. (2004). Paleontology, terrestriality, and the intelligence of great apes. In A. Russon, & D. R. Begun (Eds.), The evolution of thought: Evolutionary origins of great ape intelligence (pp. 320–334). Cambridge, UK: Cambridge University Press.Google Scholar
  34. Geissmann, T. (1991). Reassessment of age of sexual maturity in gibbons (Hylobates spp.). American Journal of Primatology, 23, 11–22. doi:10.1002/ajp.1350230103.CrossRefGoogle Scholar
  35. Grand, T. I. (1972). A mechanical interpretation of terminal branch feeding. Journal of Mammalogy, 53, 189–201. doi:10.2307/1378849.CrossRefGoogle Scholar
  36. Hacia, J. G. (2001). Genom of the apes. Trends in Genetics, 17, 637–645. doi:10.1016/S0168-9525(01)02494-5.PubMedCrossRefGoogle Scholar
  37. Harvey, P. H., Martin, R. D., & Clutton-Brock, T. H. (1987). Life histories in comparative perspective. In B. B. Smuts, D. L. Cheney, R. M. Seyfarth, R. W. Wrangham, & T. T. Struhsaker (Eds.), Primate societies (pp. 181–196). Chicago: University of Chicago Press.Google Scholar
  38. Janson, C. H., & van Schaik, C. P. (1993). Ecological risk aversion in juvenile primates: Slow and steady wins the race. In M. E. Pereira, & L. A. Fairbanks (Eds.), Juvenile primates (pp. 57–74). Oxford: Oxford University Press.Google Scholar
  39. Joffe, T. H. (1997). Social pressures have selected for an extended juvenile period in primates. Journal of Human Evolution, 32, 593–605. doi:10.1006/jhev.1997.0140.PubMedCrossRefGoogle Scholar
  40. Kaplan, H., Hill, K., Lancester, J., & Hurtado, A. M. (2000). A theory of human life history evolution: diet, intelligence, and longevity. Evolutionary Anthropology, 9, 156–185. doi:10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7.CrossRefGoogle Scholar
  41. Kappeler, P. M., & Pereira, M. E. (2003). Primate life histories and socioecology. Chicago: Chicago University Press.Google Scholar
  42. Kappeler, P. M., Pereira, M. E., & van Schaik, C. P. (2003). Primate life histories and socioecology. In P. M. Kappeler, & M. E. Pereira (Eds.), Primate life histories and socioecology (pp. 1–32). Chicago: Chicago University Press.Google Scholar
  43. Kappeler, P. M., & van Schaik, C. P. (2002). Evolution of primate social systems. International Journal of Primatology, 23, 707–740. doi:10.1023/A:1015520830318.CrossRefGoogle Scholar
  44. Kawakami, T. G., & Kollias, G. V., (1984). Breeding and rearing gibbons in captivity. In H. Preuschoft, D. J. Chivers, W. Y. Brockelman, & N. Creel (Eds.), The lesser apes: Evolutionary and behavioral biology (pp. 44–50). Edinburgh: Edinburgh Universtiy Press.Google Scholar
  45. Kelley, J. (1997). Paleobiological and phylogenetic significance of life history in miocene hominoids. In D. R. Begun, C. V. Ward, & N. D. Rose (Eds.), Function, phylogeny, and fossils: Miocene hominoids evolution and adaptations (pp. 173–208). New York: Plenum Press.Google Scholar
  46. Kelley, J. (2004). Life history and cognitive evolution. In A. Russon, & D. R. Begun (Eds.), The evolution of thought: Evolutionary origins of great ape intelligence (pp. 280–297). Cambridge, UK: Cambridge University Press.Google Scholar
  47. Kirkwood, J. K. (1985). Patterns of growth in primates. Journal of Zoology, 205, 123–136.Google Scholar
  48. Kitamura, S., Suzuki, S., Yumoto, T., Chuailua, P., Plongmai, K., Poonswad, P., et al. (2005). A botanical inventory of a tropical seasonal forest in Khao Yai National Park, Thailand: Implications for fruit-frugivore interactions. Biodiversity and Conservation, 14, 1241–1262. doi:10.1007/s10531-004-7848-x.CrossRefGoogle Scholar
  49. Kitamura, S., Suzuki, S., Yumoto, T., Poonswad, P., Chuailua, P., Plongmai, K., et al. (2004). Dispersal of Aglaia spectabilis, a large-seeded tree species in a moist evergreen forest in Thailand. Journal of Tropical Ecology, 20, 421–427. doi:10.1017/S0266467404001555.CrossRefGoogle Scholar
  50. Knott, C. D. (1999). Reproductive, physiological and behavioral responses of orangutans in Borneo to fluctuations in food availability. Ph.D. thesis, Cambridge, MA: Harvard University.Google Scholar
  51. Knott, C. D. (2001). Female reproductive ecology of the apes implications for human evolution. In P. Ellison (Ed.), Reproductive ecology and human evolution (pp. 429–463). New York: Aldine.Google Scholar
  52. Knott, C. D., & Kahlenberg, S. M. (2007). Orangutans in perspective forced copulations and female mating resistance. In C. J. Campbell, A. Fuentes, K. C. MacKinnon, M. Panger, & S. K. Bearder (Eds.), Primates in perspective (pp. 290–305). Oxford: Oxford University Press.Google Scholar
  53. Koenig, A., Borries, C., Chalise, M. K., & Winkler, P. (1997). Ecology, nutrition, and timing of reproductive events in an Asian primate, the Hanuman lanugr (Presbytis entellus). Journal of Zoology, 243, 215–235.Google Scholar
  54. Kudo, H., & Dunbar, R. I. M. (2001). Neocortex size and social network size in primates. Animal Behaviour, 62, 711–722. doi:10.1006/anbe.2001.1808.CrossRefGoogle Scholar
  55. Lancaster, J. B., & Lee, R. B. (1965). The annual reproductive cycle in monkeys and apes. In I. De Vore (Ed.), Primate behavior: Field studies of monkeys and apes (pp. 486–513). New York: Holt Rinehart and Winston.Google Scholar
  56. Lappan, S. (2007a). Patterns of dispersal in Sumatran siamangs (Symphalangus syndactylus): Preliminary mtDNA evidence suggests more frequent male than female dispersal to adjacent groups. American Journal of Primatology, 69, 692–698. doi:10.1002/ajp.20382.PubMedCrossRefGoogle Scholar
  57. Lappan, S. (2007b). Social relationships among males in multimale siamang groups. International Journal of Primatology, 28, 369–387. doi:10.1007/s10764-007-9122-z.CrossRefGoogle Scholar
  58. Lee, C. P. (1999). Comparative ecology of postnatal growth and weaning among haplorhine primates. In P. C. Lee (Ed.), Comparative primate socioecology (pp. 111–139). Cambridge, UK: Cambridge University Press.Google Scholar
  59. Lee, C. P., Majluf, P., & Gordon, I. J. (1991). Growth, weaning and maternal investment from a cooperative perspective. Journal of Zoology, 225, 99–114.Google Scholar
  60. Leighton, D. R. (1987). Gibbons: Territoriality and monogamy. In B. B. Smuts, D. L. Cheney, R. M. Seyfarth, R. W. Wrangham, & T. T. Struhsaker (Eds.), Primate societies (pp. 135–145). Chicago: University of Chicago Press.Google Scholar
  61. Lindburg, D. G. (1987). Seasonality of reproduction in primates. In G. Mitchell, & J. Erwin (Eds.), Comparative primate biology behavior, cognition, motivation (pp. 167–218). New York: Alan R. Liss.Google Scholar
  62. Lund, U., & Agostinelli, C. (2006). Circular: Circular statistics. R package version 0.3–6.Google Scholar
  63. MacLeod, C. E. (2004). What’s in a brain? The question of a distinctive brain anatomy in great apes. In A. Russon, & D. R. Begun (Eds.), The evolution of thought: Evolutionary origins of great ape intelligence (pp. 105–121). Cambridge, UK: Cambridge University Press.Google Scholar
  64. Martin, P., & Bateson, P. (1993). Measuring behaviour. An Introductory guide (2nd ed.). Cambridge, UK: Cambridge University Press.Google Scholar
  65. Masters, A., & Markham, R. J. (1991). Assessing reproductive status in orangutans by using urinary estrone. Zoo Biology, 10, 197–208. doi:10.1002/zoo.1430100303.CrossRefGoogle Scholar
  66. Milton, K. (1981). Distribution patterns of tropical plant foods as an evolutionary stimulus to primate mental development. American Anthropologist, 83, 534–548. doi:10.1525/aa.1981.83.3.02a00020.CrossRefGoogle Scholar
  67. Milton, K. (1988). Foraging behavior and the evolution of primate intelligence. In R. W. Byrne, & A. Whiten (Eds.), Machiavellian intelligence (pp. 285–306). Oxford: Clarendon Press.Google Scholar
  68. Mitani, J. C. (1990). Demography of agile gibbons (Hylobates agilis). International Journal of Primatology, 11, 411–424. doi:10.1007/BF02196129.CrossRefGoogle Scholar
  69. Nishida, T., Corp, N., Hamai, M., Hasegawa, T., Hiraiwa-Hasegawa, M., Hosaka, K., et al. (2003). Demography, female life history, and reproductive profiles among the chimpanzees of Mahale. American Journal of Primatology, 59, 99–121. doi:10.1002/ajp.10068.PubMedCrossRefGoogle Scholar
  70. Nunn, C. L. (1999). The evolution of exaggerated sexual swellings in primates and the graded-signal hypothesis. Animal Behaviour, 58, 229–246. doi:10.1006/anbe.1999.1159.PubMedCrossRefGoogle Scholar
  71. Palombit, R. A. (1994). Extra-pair copulations in a monogamous ape. Animal Behaviour, 47, 721–723. doi:10.1006/anbe.1994.1097.CrossRefGoogle Scholar
  72. Palombit, R. A. (1995). Longitudinal patterns of reproduction in wild female Siamang (Hylobates syndactylus) and white-handed gibbons (Hylobates lar). International Journal of Primatology, 16, 739–760. doi:10.1007/BF02735718.CrossRefGoogle Scholar
  73. Parker, S. T., & Gibson, K. R. (1979). A developmental model of the evolution of language and intelligence in early hominids. The Behavioral and Brain Sciences, 2, 367–408.Google Scholar
  74. Plavcan, J. M. (1999). Mating systems, intrasexual competition and sexual dimorphism in primates. In P. C. Lee (Ed.), Comparative primate socioecology (pp. 241–270). Cambridge, UK: Cambridge University Press.Google Scholar
  75. Plavcan, J. M., van Schaik, C. P., & Kappeler, P. M. (1995). Competition, coalitions and canine size in primates. Journal of Human Evolution, 28, 245–276. doi:10.1006/jhev.1995.1019.CrossRefGoogle Scholar
  76. Povinelli, D. J., & Cant, J. G. H. (1995). Arboreal clambering and the evolution of self-conception. The Quarterly Review of Biology, 70, 393–421. doi:10.1086/419170.PubMedCrossRefGoogle Scholar
  77. Pusey, A. E., Oehlert, G. W., Williams, J. M., & Goodall, J. (2005). Influence of ecological and social factors on body mass of wild chimpanzees. International Journal of Primatology, 26, 3–31. doi:10.1007/s10764-005-0721-2.CrossRefGoogle Scholar
  78. Raaum, R. L., Sterner, K. N., & Novielleo, C. M. (2005). Catarrhine primate divergence dates estimated from complete mitochondrial genomes: Concordance with fossil and nuclear DNA evidence. Journal of Human Evolution, 48, 237–257. doi:10.1016/j.jhevol.2004.11.007.PubMedCrossRefGoogle Scholar
  79. R Development Core Team. (2006). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, http://www.R-project.org.
  80. Reichard, U. (1995). Extra-pair copulation in a monogamous gibbon (Hylobates lar). Ethology, 100, 99–112.CrossRefGoogle Scholar
  81. Reichard, U. H. (1998). Sleeping sites, sleeping places, and sleeping behaviour of gibbons (Hylobates lar). American Journal of Primatology, 46, 35–62. doi:10.1002/(SICI)1098-2345(1998)46:1<35::AID-AJP4>3.0.CO;2-W.PubMedCrossRefGoogle Scholar
  82. Reichard, U. H. (2003). Social monogamy in gibbons: The male perspective. In U. H. Reichard, & C. Boesch (Eds.), Monogamy: Mating strategies and partnerships in birds, humans and other mammals (pp. 190–213). Cambridge, UK: Cambridge University Press.Google Scholar
  83. Reichard, U. H. (in press). Social organization and mating system of Khao Yai white-handed gibbons, 1992–2006. In S. M. Lappan, D. Whittaker, & T. Geissmann (Eds.), Wild gibbon populations: New understandings of small ape socioecology, population biology and conservation. Berlin: Springer.Google Scholar
  84. Reichard, U. H., & Sommer, V. (1997). Group encounters in wild gibbons (Hylobates lar): Agonism, affiliation, and the concept of infanticide. Behaviour, 134, 1135–1174. doi:10.1163/156853997X00106.CrossRefGoogle Scholar
  85. Rilling, J. K., & Insel, T. R. (1998). Evolution of the cerebellum in primates: Differences in relative volume among monkeys, apes and humans. Brain, Behavior and Evolution, 52, 308–314. doi:10.1159/000006575.PubMedCrossRefGoogle Scholar
  86. Rilling, J. K., & Insel, T. R. (1999). The primate neocortex in comparative perspective using magnetic imaging. Journal of Human Evolution, 37, 191–223. doi:10.1006/jhev.1999.0313.PubMedCrossRefGoogle Scholar
  87. Rilling, J. K., & Seligmann, R. A. (2002). A quantitative morphometric comparative analysis of the primate temporal lobe. Journal of Human Evolution, 42, 505–533. doi:10.1006/jhev.2001.0537.PubMedCrossRefGoogle Scholar
  88. Robbins, M. M., Bermejo, M., Cipolletta, C., Magliocca, F., Parnell, R. J., & Stokes, E. (2004). Social structure and life-history patterns in western gorillas (Gorilla gorilla gorilla). American Journal of Primatology, 64, 145–159. doi:10.1002/ajp.20069.PubMedCrossRefGoogle Scholar
  89. Roos, C., & Geissmann, T. (2001). Molecular phylogeny of the major Hylobatid divisions. Molecular Phylogenetics and Evolution, 19, 486–494. doi:10.1006/mpev.2001.0939.CrossRefGoogle Scholar
  90. Ross, C. (1988). The intrinsic rate of natural increase and reproductive effort in primates. Journal of Zoology, 214, 199–219.CrossRefGoogle Scholar
  91. Ross, C. (2004). Life histories and the evolution of large brain size in great apes. In A. Russon, & D. R. Begun (Eds.), The evolution of thought: Evolutionary origins of great ape intelligence (pp. 122–139). Cambridge, UK: Cambridge University Press.Google Scholar
  92. Ross, C., & Jones, K. E. (1999). Socioecology and the evolution of primate reproductive rates. In P. C. Lee (Ed.), Comparative primate socioecology (pp. 73–110). Cambridge, UK: Cambridge University Press.Google Scholar
  93. Savini, T., Boesch, C., & Reichard, U. H. (2008). Home range characteristics and its influence on female reproduction in white-handed gibbons (Hylobates lar) at Khao Yai National Park, Thailand. American Journal of Physical Anthropology, 135, 1–12. doi:10.1002/ajpa.20578.PubMedCrossRefGoogle Scholar
  94. Savini, T., Boesch, C., & Reichard, U. H. (submitted) Varying ecological quality influences the probability of polyandry in Khao Yai white-handed gibbons (Hylobates lar). Biotropica.Google Scholar
  95. Schenker, N. M., Desgouttes, A. M., & Semendeferi, K. (2005). Neural connectivity and cortical substrates of cognition in hominoids. Journal of Human Evolution, 49, 547–569. doi:10.1016/j.jhevol.2005.06.004.PubMedCrossRefGoogle Scholar
  96. Scheumann, M., & Call, J. (2006). Sumatran orangutans and a yellow-cheeked crested gibbon know what is where. International Journal of Primatology, 27, 575–602. doi:10.1007/s10764-006-9024-5.CrossRefGoogle Scholar
  97. Schuster, S. M., & Wade, M. J. (2003). Mating systems and strategies. Princeton and Oxford: Princeton University Press.Google Scholar
  98. Smith, R. J., & Jungers, W. L. (1997). Body mass in comparative primatology. Journal of Human Evolution, 32, 523–559. doi:10.1006/jhev.1996.0122.PubMedCrossRefGoogle Scholar
  99. Sommer, V., & Reichard, U. H. (2000). Rethinking monogamy: the gibbon case. In P. M. Kappeler (Ed.), Primate males: Causes and consequences of variation in group composition (pp. 159–171). Cambridge, UK: Cambridge University Press.Google Scholar
  100. Stokes, E. J., & Byrne, R. W. (2001). Cognitive capacities for behavioural flexibility in wild chimpanzees (Pan troglodytes): The effect of snare injury on complex manual food processing. Animal Cognition, 4, 11–28. doi:10.1007/s100710100082.CrossRefGoogle Scholar
  101. Stumpf, R. (2007). Chimpanzees and bonobos. In C. J. Campbell, A. Fuentes, K. C. MacKinnon, N. Panger, & S. K. Bearder (Eds.), Primates in perspective (pp. 321–344). Oxford: Oxford University Press.Google Scholar
  102. Treesucon, U. (1984). Social development of young Gibbons (Hylobates lar) in Khao Yai National Park, Thailand. Unpubl. MSc. thesis, Mahidol University, Bangkok.Google Scholar
  103. Uehara, S., & Nishida, T. (1987). Body weights of wild chimpanzees (Pan troglodytes schweinfurthii) of the Mahale Mountains National Park, Tanzania. American Journal of Physical Anthropology, 72, 315–321. doi:10.1002/ajpa.1330720305.PubMedCrossRefGoogle Scholar
  104. Uhde, N. L., & Sommer, V. (2002). Antipredatory behavior in gibbons (Hylobates lar, Khao Yai/Thailand). In L. M. Miller (Ed.), Eat or be eaten: Predator sensitive foraging among nonhuman primates (pp. 268–291). Cambridge, UK: Cambridge University Press.Google Scholar
  105. Ujhelyi, M. (2000). On the evolution of the capacity for mirror-self-recognition. Selection, 1, 165–172. doi:10.1556/Select.1.2000.1-3.16.CrossRefGoogle Scholar
  106. UNESCO World Heritage Center (2005). The World Heritage Newsletter 50.Google Scholar
  107. van Schaik, C. P., & Deaner, R. O. (2003). Life history and cognitive evolution in primates. In F. B. M. de Waal, & P. L. Tyack (Eds.), Animal social complexity (pp. 5–25). Cambridge, MA: Harvard University Press.Google Scholar
  108. van Schaik, C. P., Fox, E. B. A., & Fechtman, L. T. (2003). Individual variation in the rate of use of tree-hole tools among wild orang-utans: Implications for hominin evolution. Journal of Human Evolution, 44, 11–23. doi:10.1016/S0047-2484(02)00164-1.PubMedCrossRefGoogle Scholar
  109. van Schaik, C. P., Preuschoft, S., & Watts, D. P. (2004). Great ape social systems. In A. E. Russon, & D. R. Begun (Eds.), The evolution of thought: Evolutionary origins of great ape intelligence (pp. 190–209). Cambridge, UK: Cambridge University Press.Google Scholar
  110. Ward, C. V., Flinn, M., & Begun, D. R. (2004). Body size and intelligence in hominoid evolution. In A. Russon, & D. R. Begun (Eds.), The evolution of thought: Evolutionary origins of great ape intelligence (pp. 335–345). Cambridge, UK: Cambridge University Press.Google Scholar
  111. Watts, D. P. (2001). Social relationships of female mountain gorillas. In M. M. Robbins, P. Sicotte, & K. J. Stewart (Eds.), Mountain gorillas: Three decades of research at Karisoke (pp. 215–240). Cambridge, UK: Cambridge University Press.Google Scholar
  112. Wich, S. A., Utami-Atmoko, S. S., Setia, T. M., Rijkesen, H. R., Schürmann, D., van Hooff, J. A. R. A. M., et al. (2004). Life history of wild orangutans (Pongo abelii). Journal of Human Evolution, 47, 385–398. doi:10.1016/j.jhevol.2004.08.006.PubMedCrossRefGoogle Scholar
  113. Zar, J. H. (1999). Biostatistical analysis (4th ed.). Upper Saddle River, NJ: Prentice-Hall.Google Scholar
  114. Zinner, D. P., Nunn, C. L., van Schaik, C. P., & Kappeler, P. M. (2004). Sexual selection and exaggerated sexual swellings of female primates. In P. M. Kappeler, & C. P. van Schaik (Eds.),Sexual selection in primates: New and comparative perspectives (pp. 71–89). New York: Cambridge University Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of AnthropologySouthern Illinois University CarbondaleCarbondaleUSA
  2. 2.Department of Reproductive BiologyGerman Primate CentreGöttingenGermany

Personalised recommendations