International Journal of Primatology

, Volume 29, Issue 1, pp 245–263 | Cite as

Examination of the Taxonomy and Diversification of Leontopithecus using the Mitochondrial Control Region

  • Beatriz M. Perez-SweeneyEmail author
  • Claudio Valladares-Padua
  • Cristiana Saddy Martins
  • Juan Carlos Morales
  • Don J. MelnickEmail author


Leontopithecus comprises 4 taxa: black lion tamarins (L. chrysopygus), golden lion tamarins (L. rosalia), black-faced lion tamarins (L. caissara), and golden-headed lion tamarins (L. chrysomelas). Endemic to the Atlantic Forest of Brazil, they are endangered (Appendix I, CITES; IUCN Critically Endangered: Leontopithecus chrysopygus, L. caissara; IUCN Endangered: L. rosalia, L. chrysomelas). The 4 taxa are differentiated morphologically and geographically and occupy different habitat types. However, it is not clear if all of them are separate species, particularly Leontopithecus caissara, or how they are related to one another evolutionarily. Therefore, we investigated lion tamarin differentiation and radiation. We sequenced the mtDNA control region and performed phylogenetic analyses, population aggregation analyses, and Mantel tests for geographic/genetic correlation. Mitochondrial genetic data suggest 3 distinct lion tamarin clades (Leontopithecus chrysomelas; L. caissara; and L. chrysopygus/L. rosalia). Phylogenetic analysis also supports: 1) the basal lion tamarin is Leontopithecus chrysomelas, and not L. chrysopygus, 2) L. caissara is not subspecific to L. chrysopygus, and 3) Quaternary forest refugia may have shaped lion tamarin diversification via a pattern that does not follow the theory of metachromism. Even though mitochondrial genetic analyses do not unequivocally support the 4 lion tamarins as separate species, one should consider the 4 lion tamarins, with equal conservation priority based on the combination of morphological, genetic, and habitat differentiation. Each of them is an extremely valuable flagship species that focuses attention on the diminishing, highly endemic Atlantic Forest of Brazil.


Leontopithecus mitochondria phylogenetic refugia taxonomy 



The U.S. National Science Foundation (Award No. 9814257 to BMP-S, DJM), Primate Conservation, Inc. (BMP-S, DJM), Sheldon Sheps Foundation (Department of Anthropology, Columbia University to BMP-S), the Center for Environmental Research Conservation (CERC) at Columbia University, the IPÊ –(Institute for Ecological Research in Brazil), the New York Consortium for Evolutionary Primatology (BMP-S), and an NIH minority supplement (award HL61960–06 to John Ho for support of BMP-S) provided funding for the research. We completed sample collection and handling in compliance with the Animal Care and Use committee at Columbia University. We transferred BLT samples with all required U.S. permits (U.S. Fish and Wildlife Service and New York State Wildlife Authority) and Brazilian permits (IBAMA and CNPq). We thank Todd Disotell of New York University for his invaluable suggestions on data analysis. We thank Laury Cullen, Patricia Medici, Alcides Pissinati, and Fabiana Prado and the excellent field assistants at the IPÊ for their logistical and moral support during field collection.


  1. Archie, J. W. (1996). Measures of homoplasy. In M. J. Sanderson, & L. Hufford (Eds.) Homoplasy: The recurrence of similarity in evolution. San Diego: Academic Press.Google Scholar
  2. Avise, J. C., & Ball, R. M., Jr. (1990). Principles of genealogical concordance in species concepts and biological taxonomy. Oxford Surveys in Evolutionary Biology, 7, 45–67.Google Scholar
  3. Bradbury, M. W., & Fabricant, J. D. (1988). Changes in melanin granules in the fox due to coat color mutations. Journal of Heredity, 79, 133–136.PubMedGoogle Scholar
  4. Burity, C. H. F., Mandarim-de-Lacerda, C. A., & Pissinatti, A. (1999). Cranial and mandibular morphometry in Leontopithecus Lesson, 1840 (Callitrichidae, Primates). American Journal of Primatology, 48, 185–196.PubMedCrossRefGoogle Scholar
  5. Bush, M. B. (1994). Amazonian speciation: A necessarily complex model. Journal of Biogeography, 21, 5–17.CrossRefGoogle Scholar
  6. Coimbra-Filho, A. F. (1990). Sistematica, distribuicão geografica e situacão atual dos simios brasileiros (Platyrrhini,-Primates). Revista Brasileira Biologia, 50, 1063–1079.Google Scholar
  7. Coimbra-Filho, A. F., & Mittermeier, R. A. (1973). Distribution and ecology of the genus Leontopithecus Lesson, 1840 in Brazil. Primates, 14, 47–66.CrossRefGoogle Scholar
  8. Coimbra-Filho, A. F., & Mittermeier, R. A. (1976). Hybridization in the genus Leontopithecus, L.r. rosalia (Linneaeus 1766) X L.r. chrysomelas (Kuhl, 1820) (Callitrichidae, primates). Revista Brasileira Biologia, 36, 129–137.Google Scholar
  9. Collura, R. V., & Stewart, C.-B. (1995). Insertions and duplications of mtDNA in the nuclear genomes of Old World monkeys and hominoids. Nature, 378, 485–489.PubMedCrossRefGoogle Scholar
  10. Cracraft, J. (1983). Species concepts and speciation analysis. Current Ornithology, 1, 159–187.Google Scholar
  11. Davis, J. I., & Nixon, K. C. (1992). Populations, genetic variation, and the delimitation of phylogenetic species. Systematic Biology, 4, 421–435.CrossRefGoogle Scholar
  12. De Pinto, L. P. S., & Rylands, A. (1997). Geographic distribution of the golden-headed lion tamarin, Leontopithecus chrysomelas: Implications for its management and conservation. Folia Primatologica, 68, 161–180.CrossRefGoogle Scholar
  13. Della Serra, O. (1951). Divisao do genero Leontocebus (Macacos, Platyrrhina) em dois subgeneros sob bases de caracteres dento-morfologicos. Papéis Avulsos de Zoologia (São Paulo), 10, 147–154.Google Scholar
  14. Excoffier, L., & Yang, Z. (1999). Substitution rate variation among sites in mitochondrial hypervariable region I of humans and chimpanzees. Molecular Biology and Evolution, 16, 1357–1368.PubMedGoogle Scholar
  15. Forman, L., Kleiman, D. G., Bush, R. M., Dietz, J. M., Ballou, J. D., Phillips, L. G., et al. (1986). Genetic variation within and among lion tamarins. American Journal of Physical Anthropology, 71, 1–11.PubMedCrossRefGoogle Scholar
  16. Gatesy, J., DeSalle, R., & Wheeler, W. (1993). Alignment-ambiguous nucleotide sites and the exclusion of systematic data. Journal of Molecular Evolution, 2, 152–157.CrossRefGoogle Scholar
  17. Haffer, J. (1993). Time’s cycle and time’s arrow in the history of Amazonia. Biogeographica, 69, 15–45.Google Scholar
  18. Hershkovitz, P. (1968). Metachromism or the principle of evolutionary change in mammalian tegumentary colors. Evolution, 22, 556–575.CrossRefGoogle Scholar
  19. Hershkovitz, P. (1977). Living new world monkeys (Platyrrhini) with an introduction to primates (Vol. 1, pp. 825–846). Chicago: University of Chicago Press.Google Scholar
  20. Hirobe, T., Wakamatsu, K., Ito, S., Kawa, Y., Soma, Y., & Mizoguchi, M. (2006). The slaty mutation affects eumelanin and pheomelanin synthesis in mouse melanocytes. European Journal of Cell Biology, 85, 537–549.PubMedCrossRefGoogle Scholar
  21. Ito, S., & Kazumasa, W. (2003). Quantitative analysis of eumelanin and pheomelanin in humans, mice and other animals: A comparative review. Pigment Cell Research, 16, 523–531.PubMedCrossRefGoogle Scholar
  22. Jackson, J. F. (1978). Differentiation in the genera Enyalius and Strobilurus (Iguanidiae): Implications for Pleistocene climatic changes in eastern Brazil. Arquivos Zoologia (São Paulo), 30, 1–79.Google Scholar
  23. Jackson, I. J. (1997). Homologous pigmentation mutations in human, mouse and other model organisms. Human Molecular Genetetics, 6, 1613–1624.CrossRefGoogle Scholar
  24. Jacobs, S. C., Larson, A., & Cheverud, J. M. (1995). Phylogenetic relationships and orthogenetic evolution of coat color among tamarins (genus Saguinus). Systematic Biology, 44, 515–532.CrossRefGoogle Scholar
  25. Joly, C. A., Leitão-Filho, H. F., & Silva, S. M. (1991). O patrimônio florístico/The floristic heritage. In de G. Câmara (Ed.), Mata Atlântica/ Atlantic Rain Forest (pp. 95–125). I. Editora Index Ltd. and Fundação SOS Mata Atlântica, São Paulo.Google Scholar
  26. Kierullf, M. C., Raboy, B. E., Oliveira, P. P., Miller, K., Passos, F. C., & Prado, F. (2002). Behavioral ecology of lion tamarins. In D. Kleiman & A. B. Rylands (Eds.) The lion tamarins of Brazil: Twenty-five years of research and conservation (pp. 157–187). Washington, DC: Smithsonian Institution Press.Google Scholar
  27. Kinzey, W. (1982). Distribution of primates and forest refuges. In G. T. Prance (Ed.) Biological diversification in the tropics (pp. 455–482). New York: Columbia University Press.Google Scholar
  28. Lima, F. S., Cristina da Silva, I., Martins, C. S., & Padua, C. V. (2003). On the occurrence of the black lion tamarin (Leontopithecus chrysopygus) in Buri, Sao Paulo, Brazil. Neotropical Primates, 11, 76–77.Google Scholar
  29. Maddison, W. P., & Maddison, D. R. (1992). MacClade: Analysis of Phylogeny and Character Evolution, Version 3.0. Sinauer Associates, Sunderland, MA.Google Scholar
  30. Mecocci, P., MacGarvey, U., Kaufman, A. E., Koontz, D., Shoffner, J. M., Wallace, D. C., et al. (1993). Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Annals of Neurology, 34, 609–616.PubMedCrossRefGoogle Scholar
  31. Meyer, S., Weiss, G., & von Haeseler, A. (1999). Pattern of nucleotide substitution and rate heterogeneity in the hypervariable regions I and II of human mtDNA. Genetics, 152, 1103–1110.PubMedGoogle Scholar
  32. Moreira, M. A. M., & Seuánez, H. N. (1999). Mitochondrial pseudogenes and phyletic relationships of Cebuella and Callithrix (Platyrrhini, Primates). Primates, 40, 353–364.CrossRefGoogle Scholar
  33. Moritz, C. (1994). Defining ‘evolutionarily significant units’ for conservation. Trends in Ecology and Evolution, 9, 373–375.CrossRefGoogle Scholar
  34. Müller, P. (1973). The Dispersal centres of terrestrial vertebrates in the neotropical realm. The Hague: Junk.Google Scholar
  35. Mundy, N. I., & Kelly, J. (2001). Phylogeny of lion tamarins (Leontopithecus spp) based on interphotoreceptor retinol binding protein intron sequences. American Journal of Primatology, 54, 33–40.PubMedCrossRefGoogle Scholar
  36. Mundy, N. I., Pissinatti, A., & Woodruff, D. S. (2000). Multiple nuclear insertions of mitochondrial cytochrome b sequences in Callitrichine primates. Molecular Biology and Evolution, 17, 1075–1080.PubMedGoogle Scholar
  37. Natori, M. (1989). An analysis of cladistic relationships of Leontopithecus based on dental and cranial characters. Journal of the Anthropological Society of Nippon, 97, 157–167.Google Scholar
  38. Natori, M., & Hanihara, T. (1989). An analysis of interspecific relationships of Saguinus based on cranial measurements. Primates, 29, 255–262.CrossRefGoogle Scholar
  39. Newton, J. M., Wilkie, A. L., He, L., Jordan, S. A., Metallinos, D. L., Holmes, N. G., et al. (2000). Melanocortin 1 receptor variation in domestic dog. Mammalian Genome, 11, 24–30.PubMedCrossRefGoogle Scholar
  40. Rizzini, C. T., Coimbra-Filho, A. F., & Houaiss, A. (1988). Ecossistemas Brasileiros/Brazilian Ecosystems. Rio de Janeiro, Brazil: Editora Index.Google Scholar
  41. Rohe, F., Antunes, A. P., & Farah de Tofoli, C. (2003). The discovery of a new population of black lion tamarins (Leontopithecus chrysopygus) in the Serra de Paranapiacaba, Sao Paulo, Brazil. Neotropical Primates, 11, 75–76.Google Scholar
  42. Rosenberger, A. L., & Coimbra-Filho, A. F. (1984). Morphology, taxonomic status and affinities of the lion tamarins, Leontopithecus (Callitrichinae, Cebidae). Folia Primatologica, 42, 149–179.CrossRefGoogle Scholar
  43. Rylands, A. B., Coimbra-Filho, A. F., & Mittermeier, R. A. (1993). Systematics, geographic distribution, and some notes on the conservation status of the Callitrichidae. In A. B. Rylands (Ed.) Marmosets and tamarins (pp. 296–297). New York: Oxford University Press.Google Scholar
  44. Rylands, A. B., da Fonseca, G. A. B., Leite, Y. L. R., & Mittermeier, R. A. (1996). Primates of the Atlantic Forest: Origin, distributions, endemism, and communities. In M. A. Norconk, A. L. Rosenberger, & P. A. Garber (Eds.) Adaptive radiation of neotropical primates (pp. 21–51). New York: Plenum Press.Google Scholar
  45. Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biological Evolution, 4, 406–425.Google Scholar
  46. Seuánez, H. N., Di Fiori, A., Moreira, M. A. M., Ameida, C. A. S., & Canavez, F. C. (2002). In D. G. Kleiman, & A. Rylands (Eds.) Genetics and evolution of lion tamarins: biology and conservation pp. 117–132. Washington, D.C.: Smithsonian Institution Press.Google Scholar
  47. Shedd, D. H., & Macedonia, J. M. (1991). Metachromism and its phylogenetic implications for the genus Eulemur (Prosimii: Lemuridae). Folia Primatologica, 57, 221–231.CrossRefGoogle Scholar
  48. Snowdon, C. T., Hodun, A., Rosenberger, A., & Coimbra-Filho, A. F. (1986). Long call structure and its relation to taxonomy in lion tamarins. American Journal of Primatology, 11, 253–261.CrossRefGoogle Scholar
  49. Swofford, D. L. (1991). PAUP: Phylogenetic analysis using parsimony, version 3.1.1. Champaign: Illinois Natural History Survey.Google Scholar
  50. Tagliaro, C. H., Schneider, M. P. C., Schneider, H., Sampaio, I. C., & Stanhope, M. J. (1997). Marmoset phylogenetics, conservation perspectives, and evolution of the mtDNA control region. Molecular Biology and Evolution, 14, 674–684.PubMedGoogle Scholar
  51. Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of the mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10, 512–526.PubMedGoogle Scholar
  52. Templeton, A. R. (1989). The meaning of species and speciation: A genetic perspective. In D. Otte, & J. A. Endler (Eds.) Speciation and its consequences. Sunderland, MA: Sinauer Associates.Google Scholar
  53. Templeton, A. R. (2001). Using phylogenetic analysis of gene trees to test species status and processes. Molecular Ecology, 10, 779–791.PubMedCrossRefGoogle Scholar
  54. Valladares-Padua, C. (1987). Black lion tamarin (Leontopithecus chrysopygus): Status and Conservation. Master's thesis. University of Florida, Gainseville.Google Scholar
  55. Veloso, H. P. (1966). Atlas florestal do Brasil. Rio de Janeiro: Ministry of Agriculture.Google Scholar
  56. Whitmore, T. C., & Prance, G. T. (1987). Biogeography and Quarternary History in Tropical America. Oxford: Clarendon Press.Google Scholar
  57. Wilson, E. O., & Brown Jr., W. L. (1953). The subspecies concept and its taxonomic application. Systematic Zoology, 2, 97–111.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Beatriz M. Perez-Sweeney
    • 1
    Email author
  • Claudio Valladares-Padua
    • 2
  • Cristiana Saddy Martins
    • 2
  • Juan Carlos Morales
    • 3
  • Don J. Melnick
    • 4
    Email author
  1. 1.Weill Medical College of Cornell UniversityNew YorkUSA
  2. 2.IPÊInstituto de Pesquisas EcologicasNazare PaulistaBrazil
  3. 3.Division of Environmental Biology, Systematic Biology and Biodiversity InventoriesNational Science FoundationArlingtonUSA
  4. 4.Department of Ecology, Evolution, and Environmental BiologyColumbia UniversityNew YorkUSA

Personalised recommendations