International Journal of Primatology

, Volume 29, Issue 3, pp 601–613 | Cite as

Acoustic Niches of Siberut Primates

  • Christina Schneider
  • Keith Hodges
  • Julia Fischer
  • Kurt Hammerschmidt
Article

Abstract

The loud calls nonhuman primates use in long-distance communication have supposedly been selected for efficient information transfer in the habitat. The differential effects of scattering and reverberation and the masking effects of background noise predict that loud calls produced in rain forest habitats should be low-pitched and whistle-like with low-frequency modulation. Callers may also use particular calling posts or times of day with reduced background noise to increase the efficacy of sound transmission. We studied the loud calls of the 4 sympatric primate species on Siberut Island. Only Kloss gibbons (Hylobates klossii) fulfilled the predictions regarding both the structure and use of calls. Though the other 3 species —Mentawai macaques (Macaca siberu), pig-tailed langurs (Simias concolor), and Mentawai leaf monkeys (Presbytis potenziani)— also concentrated their main energies in the spectral window with the lowest background noise, their calls were not adapted to long-range transmission. All 4 species produced loud calls exclusively no lower than 18 m above ground, but food abundance and shelter in the canopy may also be factors. Though all 4 species produced the majority of loud calls in the morning, it was not the only time of day with reduced background noise. We suggest that phylogenetic inheritance may better explain the structure of calls than adaptation to the habitat. In sum, the observed usage of spectral and temporal niches is not solely an adaptation to the sound profile of the habitat, though it clearly improves their transmission.

Keywords

communication loud calls Mentawai primates signal propagation 

References

  1. Altman, J. (1986). Observational study of behaviour: Sampling methods. Behaviour, 49, 227–267.CrossRefGoogle Scholar
  2. Bradbury, J. W., & Vehrencamp, S. L. (1998). Principles of Acoustic Communication. Sunderland, MA: Sinauer Associates.Google Scholar
  3. Brenowitz, E. A. (1986). Environmental influences on acoustic and electric animal communication. Brain and Behavioral Evolution, 28, 32–42.CrossRefGoogle Scholar
  4. Brown, C. H., & Gomez, R. (1992). Functional design features in primate vocal signals: The acoustic habitat and sound distortion. In T. Nishida, W. C. McGrew, & P. Marler (Eds.) Topics of Primatology (pp. 177–198). Tokyo: Tokyo University Press.Google Scholar
  5. Brown, C. H., Gomez, R., & Waser, P. M. (1995). Old World monkey vocalisations: adaptations to the local habitat? Animal Behaviour, 50, 945–961.CrossRefGoogle Scholar
  6. Brown, C. H., & Waser, P. M. (1988). Environmental influences on the structure of primate vocalizations. In D. Todt, P. Goedeking, & D. Symmes (Eds.) Primate vocal communication (pp. 51–68). Berlin: Springer.Google Scholar
  7. Cheney, D., Seyfarth, R., & Palombit, R. (1996). The function and mechanisms underlying baboon ‘contact’ barks. Animal Behaviour, 52, 507–518.CrossRefGoogle Scholar
  8. Ey, E., Hammerschmidt, K., Seyfarth, R. M., & Fischer, J. (2007a). Age-and sex-related variations in clear calls of Chacma baboons (Papio hamadryas ursinus). International Journal of Primatology, 28, 947–960.CrossRefGoogle Scholar
  9. Ey, E., Pfefferle, D., & Fischer, J. (2007b). Do age-and sex-related variations reliably reflect body size in non-human primate vocalizations? A review. Primates, 48, 253–267.PubMedCrossRefGoogle Scholar
  10. Forrest, T. G. (1994). From sender to receiver: Propagation and environmental effects on acoustic signals. American Zoologist, 34, 644–654.Google Scholar
  11. Henwood, K., & Fabrick, A. (1979). A quantitative analysis of the dawn chorus: Temporal selection for community optimization. American Naturalist, 114, 260–274.CrossRefGoogle Scholar
  12. Holland, J., Dabelsteen, T., Pedersen, S. B., & Larsen, O. N. (1998). Degradation of wren Troglodytes troglodytes song: Implications for information transfer and ranging. Journal of the Acoustical Society of America, 103, 2154–2166.CrossRefGoogle Scholar
  13. Marten, K., & Marler, P. (1977). Sound transmission and its significance for animal vocalization I. Temperate habitats. Behavioral Ecology and Sociobiology, 2, 271–290.CrossRefGoogle Scholar
  14. Marten, K., Quine, D., & Marler, P. (1977). Sound transmission and its significance for animal vocalization II. Tropical forest habitats. Behavioral Ecology and Sociobiology, 2, 291–302.CrossRefGoogle Scholar
  15. Martens, M. J. M., & Michelsen, A. (1981). Absorption of acoustic energy by plant leaves. Journal of the Acoustical Society of America, 69, 303–306.CrossRefGoogle Scholar
  16. Morton, E. S. (1975). Ecological sources of selection on avian sounds. American Naturalist, 109, 17–34.CrossRefGoogle Scholar
  17. Naguib, M. (1997). Use of song amplitude for ranging in Carolina wrens, Thryothorus ludovicianus. Ethology, 103, 723–731.CrossRefGoogle Scholar
  18. Naguib, M. (2003). Reverberation of rapid and slow trills: Implications for signal adaptations to long-range communication. Journal of the Acoustical Society of America, 113, 1749–1756.PubMedCrossRefGoogle Scholar
  19. Naguib, M., & Wiley, R. H. (2001). Estimating the distance to a source of sound: mechanisms and adaptations for long-range communication. Animal Behaviour, 62, 825–837.CrossRefGoogle Scholar
  20. Nemeth, E., Pederson, S. B., & Winkler, H. (2006). Rainforests as concert halls for birds: Are reverberations improving sound transmission of long song elements? Journal of the Acoustial Society of America, 119, 620–626.CrossRefGoogle Scholar
  21. Nemeth, E., Winkler, H., & Dabelsteen, T. (2001). Differential degradation of antbird songs in a Neotropical rainforest: Adaptation to perch height? Journal of the Acoustical Society of America, 110, 3263–3274.PubMedCrossRefGoogle Scholar
  22. Padgham, M. (2004). Reverberation and frequency attenuation in forests—implications for acoustic communication in animals. Journal of the Acoustical Society of America, 115, 402–410.PubMedCrossRefGoogle Scholar
  23. Price, M. A., Attenborough, K., & Heap, N. W. (1988). Sound attenuation through trees: Measurements and models. Journal of Acoustical Society of America, 84, 1836–1844.CrossRefGoogle Scholar
  24. Ryan, M. J., & Kime, N. M. (2003). Selection on long-distance acoustic signals. In A. M. Simmons, A. N. Popper, & R. R. Fay (Eds.) Acoustic Communication (pp. 225–273). New York: Springer-Verlag.CrossRefGoogle Scholar
  25. Steenbeek, R., Assink, P. R., & Wich, S. A. (1999). Tenure related changes in wild Thomas’s langurs II: Long-distance calls. Behaviour, 136, 627–650.CrossRefGoogle Scholar
  26. Tenaza, R. R. (1989). Intergroup calls of male pig-tailed langurs (Simias concolor). Primates, 30, 199–206.CrossRefGoogle Scholar
  27. Waltert, M., Abegg, C., Ziegler, T., Hadi, H., Priata, D., & Hodges, K. (in press). Abundance and community structure of Mentawai primates in the Peleonan forest, North Siberut. Oryx.Google Scholar
  28. Waser, P. M. (1977). Individual recognition, intragroup cohesion and intergroup spacing: evidence from sound playback to forest monkeys. Behaviour, 60, 28–74.CrossRefGoogle Scholar
  29. Waser, P. M., & Brown, C. H. (1984). Is there a ‘sound window’ for primate communication? Behavioral Ecology and Sociobiology, 15, 73–76.CrossRefGoogle Scholar
  30. Waser, P. M., & Brown, C. H. (1986). Habitat acoustics and primate communication. American Journal of Primatology, 10, 135–154.CrossRefGoogle Scholar
  31. Waser, P. M., & Waser, M. S. (1977). Experimental studies of primate vocalisation: specializations for long-distance propagation. Tierphysiologie, 43, 239–263.Google Scholar
  32. Wich, S. A., Assink, P. R., Becher, F., & Sterck, E. H. (2002). Playbacks of long-distance calls to wild Thomas langurs (Primates; Presbytis thomasi): The effect of location. Behaviour, 139, 65–78.CrossRefGoogle Scholar
  33. Wich, S. A., & Nunn, C. L. (2002). Do male “long-distance calls” function in mate defense? A comparative study of long-distance calls in primates. Behavioral Ecology and Sociobiology, 52, 474–484.CrossRefGoogle Scholar
  34. Wiley, R. H., & Richards, D. G. (1978). Physical constraints on acoustic communication in atmosphere—implications for evolution of animal vocalizations. Behavioral Ecology and Sociobiology, 3, 69–94.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Christina Schneider
    • 1
  • Keith Hodges
    • 2
  • Julia Fischer
    • 1
  • Kurt Hammerschmidt
    • 1
  1. 1.Research Group Cognitive EthologyGerman Primate CenterGöttingenGermany
  2. 2.Department of Reproductive BiologyGerman Primate CenterGöttingenGermany

Personalised recommendations