International Journal of Primatology

, Volume 29, Issue 2, pp 365–377

Potential Effects of Ateline Extinction and Forest Fragmentation on Plant Diversity and Composition in the Western Orinoco Basin, Colombia

Article

Abstract

Cattle and agricultural farming in the western Orinoco Basin began in 1555, and since then fragmentation of continuous forest has occurred. We evaluated the effects of the disturbances and the absence of large primates on plant community composition, diversity, and regeneration patterns. Atelines (Lagothrix and Ateles) inhabited the lowlands close to the Andean mountains, but no longer live in fragmented habitats. Their absence may have negative effects on plant populations because atelines play important roles as seed dispersers in neotropical forests, especially for large-seeded plants, which are rarely swallowed by other seed dispersers. We compared 2 1-ha vegetation plots in forest fragments north of the La Macarena Mountains with 7 plots in continuous forest in Tinigua National Park. Both sites share the same climatic conditions and have similar geological origins. There is floristic affinity between forests with similar ecological characteristics; the fragmented forests are also less diverse than the continuous forests. As predicted, the forest fragments have fewer individuals with large seeds. The results suggest that forest fragmentation and local ateline extinctions affect plant communities, reducing diversity and affecting large-seeded plants.

Keywords

Atelinae forest fragments neotropical plant communities primate conservation seed dispersal 

References

  1. Andresen, E. (1999). Seed dispersal by monkeys and the fate of dispersed seeds in a peruvian rain forest. Biotropica, 31, 145–158.Google Scholar
  2. Arets, E. J. M. M., van der Hout, P., & Zagt, R. J. (2003). Responses of tree populations and forest composition to selective logging in Guyana. In H. ter Steege (Ed.), Long-term changes in tropical tree diversity: Studies from the Guiana Shield, Africa, Borneo and Melanesia. Tropenbos Series 22. Wageningen, The Netherlands, Tropenbos International, pp 95–115.Google Scholar
  3. Botero, P. (1999). Paisajes fisiográficos de la Orinoquia-Amazonia (ORAM). Colombia. IGAC, Bogotá.Google Scholar
  4. Carretero-Pinzón, X. (2005). Densidad de primates en fragmentos de bosques de galería en los llanos colombianos. In Proceedings of the 1st Colombian Congress of Primatology. Asociación Colombiana de Primatología, Bogotá.Google Scholar
  5. Chapman, C. A. (1995). Primate seed dispersal: Coevolution and conservation implications. Evolutionary Anthropology, 4, 74–82.CrossRefGoogle Scholar
  6. Chapman, C. A., & Onderdonk, D. A. (1998). Forests without primates: Primate/plant codependency. American Journal of Primatology, 45, 127–141.PubMedCrossRefGoogle Scholar
  7. Chapman, C. A., & Peres, C. (2001). Primate conservation in the new millennium: The role of scientists. Evolutionary Anthropology, 10, 16–33.CrossRefGoogle Scholar
  8. Connell, J. H. (1971). On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In P. J. Den Boer, & G. R. Gradwell (Eds.) Dynamics of populations (pp. 298–312). Wageningen: PUDOC.Google Scholar
  9. Dew, J. L. (2002). Synecology and seed dispersal in woolly monkeys (Lagothrix lagothricha poeppigii) and spider monkeys (Ateles belzebuth belzebuth) in Parque Nacional Yasuní, Ecuador. Dissertation Abstracts International B62:3041Google Scholar
  10. Harris, L. D., & Scheck, J. (1991). From implications to applications: the dispersal corridor principle applied to conservation of biological diversity. In D. A. Saunders, & R. J. Hobbs (Eds.) Nature conservation 2: The role of corridors (pp. 189–220). Chipping Norton, Australia: Surrey Beatty and Sons.Google Scholar
  11. Hernández, G., Sánchez, L. R., Carmona, T. F., Pineda, M. R., & Cuevas, R. (2000). Efecto de la ganadería extensiva sobre la regeneración arbórea de los bosques de la Sierra de Manantlán. Madera y Bosques, 6, 13–28.Google Scholar
  12. Hobbs, R. J., & Yates, C. J. (2003). Turner review No. 7: Impacts of ecosystem fragmentation on plant populations: generalising the idiosyncratic. Australian Journal of Botany, 51, 471–488.CrossRefGoogle Scholar
  13. Holdridge, L. R. (1967). Life zone ecology. San José, Costa Rica: Tropical Science Center.Google Scholar
  14. Holt, R. D., Robinson, G. R., & Gaines, M. S. (1995). Vegetation dynamics in an experimentally fragmented landscape. Ecology, 76, 1610–1624.CrossRefGoogle Scholar
  15. Hubbell, S. P. (2001). The unified neutral theory of biodiversity and biogeography. Princeton: Princeton University Press.Google Scholar
  16. Hubbell, S. P., Foster, R. P., O’Brien, S. T., Harms, K. E., Condit, R., Wechsler, B., et al. (1999). Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science, 283, 554–557.PubMedCrossRefGoogle Scholar
  17. Janzen, D. H. (1970). Herbivores and the number of tree species in tropical forests. American Naturalist, 104, 501–528.CrossRefGoogle Scholar
  18. Laurance, W. F., Lovejoy, T. E., Vasconcelos, H. L., Bruna, E. M., Didham, R. K., Stouffer, P. C., et al. (2002). Ecosystem decay of Amazonian forest fragments: A 22-year investigation. Conservation Biology, 16, 605–618.CrossRefGoogle Scholar
  19. Marsh, L. K., & Loiselle, B. A. (2003). Recruitment of black howler fruit trees in fragmented forests of Northern Belize. International Journal of Primatology, 24, 65–86.CrossRefGoogle Scholar
  20. Murphy, D. D. (1989). Conservation and confusion: wrong species, wrong scale, wrong conclusions. Conservation Biology, 3, 82–84.CrossRefGoogle Scholar
  21. Peres, C. A., & Barlow, J. (2004). Human influences on tropical forest wildlife. In J. Burley, J. Evans, & J. Youngquist (Eds.) Encyclopaedia of forest sciences. Oxford: Academic Press, Elsevier Science.Google Scholar
  22. Peres, C., & Van Roosmalen, M. G. M. (2002). Primate frugivory in two species-rich neotropical forests: Implications for the demography of large-seeded plants in overhunted areas. In D. Levey, W. R. Silva, & M. Galetti (Eds.) Seed dispersal and frugivory: Ecology, evolution and conservation (pp. 407–421). Oxon, UK: CAB International.Google Scholar
  23. Robinson, J. G., & Redford, K. H. (1986). Body size, diet, and population density of neotropical forest mammals. American Naturalist, 128, 665–680.CrossRefGoogle Scholar
  24. Russo, S. E., Campbell, C. J., Dew, J. L., Stevenson, P. R., & Suarez, S. (2005). A multi-site comparison of dietary preferences and seed dispersal by Ateles spp. International Journal of Primatology, 26, 1017–1037.CrossRefGoogle Scholar
  25. Saunders, D. A., Hobbs, R. J., & Margules, C. R. (1991). Biological consequences of ecosystem fragmentation: A review. Conservation Biology, 5, 18–32.CrossRefGoogle Scholar
  26. Sokal, R. R., & Rohlf, F. J. (1995). Biometry: The principles and practice of statistics in biological research (3rd ed.). New York: W. H. Freeman.Google Scholar
  27. Stevenson, P. R. (2000). Seed dispersal by woolly monkeys (Lagothrix lagotricha) at Tinigua National Park, Colombia: Dispersal distance, germination rates, and dispersal quantity. American Journal of Primatology, 50, 275–289.PubMedCrossRefGoogle Scholar
  28. Stevenson, P. R. (2002). Frugivory and seed dispersal by woolly monekys (Lagothrix lagothricha) at Tinigua Park, Colombia. Ph.D.Thesis. IPAS, SUNY at Stony Brook, New York.Google Scholar
  29. Stevenson, P., Quiñónez, M. J., & Castellanos, M. C. (2000). Guía de frutos de los bosques del río Duda, La Macarena, Colombia. Primera Edición. IUCN Holanda-Asociación para la Defensa de La Macarena. Bogotá, DC, Colombia, p 467.Google Scholar
  30. Stevenson, P. R., Suescun, M., & Quiñones, M. J. (2004). Characterization of forest types at the CIEM, Tinigua Park, Colombia. Field Studies of Fauna and Flora of Macarena, Colombia, 14, 1–20.Google Scholar
  31. Stevenson, P. R., Pineda, M., & Samper, T. (2005). Influence of seed size on dispersal patterns of woolly monkeys (Lagothrix lagothricha) at Tinigua Park, Colombia. Oikos, 110, 435–440.CrossRefGoogle Scholar
  32. Tilman, D., & Lehman, C. (2001). Human-caused environmental change: Impacts on plant diversity and evolution. Proceedings of the National Academy of Sciences of the United States of America, 98, 5433–5440.PubMedCrossRefGoogle Scholar
  33. Tuomisto, H., Ruokolainen, K., Kalliola, R., Linna, A., Danjoy, W., & Rodriguez, Z. (1995). Dissecting Amazonian Biodiversity. Science, 269, 63–66.PubMedCrossRefGoogle Scholar
  34. Tuomisto, H., Ruokolainen, K., & Yli-Halla, M. (2003). Dispersal, environment, and floristic variation of western Amazonian forests. Science, 299, 241–244.PubMedCrossRefGoogle Scholar
  35. Verner, J. (1986). Predicting effects of habitat patchiness and fragmentation—the researcher’s viewpoint. In M. L. Verner, J. Morrison, & C. J. Ralph (Eds.) Wildlife 2000: Modeling habitat relationships of terrestrial vertebrates pp. 327–329. Madison: University of Wisconsin Press.Google Scholar
  36. Viña, A., & Cavelier, J. (1999). Deforestation rates (1938–1988) of tropical lowland forests on the andean foothills of Colombia. Biotropica, 31, 31–36.Google Scholar
  37. Webb, N. R. (1989). Studies on the invertebrate fauna of fragmented heathland in Dorset, UK, and the implications for conservation. Biological Conservation, 47, 153–165.CrossRefGoogle Scholar
  38. Wright, J. S. (2002). Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia, 130, 1–14.Google Scholar
  39. Wunderle, J. M. (1997). The role of animal seed dispersal in accelerating native forest regeneration on degraded tropical lands. Forest Ecology Management, 99, 223–235.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.CIEM, Departamento de Ciencias BiológicasUniversidad de Los AndesBogotáColombia

Personalised recommendations