International Journal of Primatology

, Volume 28, Issue 4, pp 791–799

Mitochondrial Control Region and Population Genetic Patterns of Nycticebus bengalensis and N. pygmaeus

  • Deng Pan
  • Jing-Hua Chen
  • Colin Groves
  • Ying-Xiang Wang
  • Etsuo Narushima
  • Helena Fitch-Snyder
  • Paul Crow
  • Xiangyu Jinggong
  • Vu Ngoc Thanh
  • Oliver Ryder
  • Leona Chemnick
  • Hong-Wei Zhang
  • Yun-Xin Fu
  • Ya-Ping Zhang
Article

Abstract

Bengal slow lorises (Nycticebus bengalensis) and pygmy slow lorises (Nycticebus pygmaeus) are nocturnal which creates difficulties to study them in the field. There is a scarcity of data on them and their population genetics are poorly understood. We sequenced and analyzed a partial fragment in the first hypervariable region of the mitochondrial control region or D-loop HVRI of 21 Nycticebus bengalensis and 119 N. pygmaeus from the boundary between China and Vietnam where they are sympatric. Though the sample size for Nycticebus pygmaeus is much larger, the polymorphism level is much lower than that of N. bengalensis, possibly because of (1) external gene flow from other habitats of N. bengalensis, (2) gene ingression from Sunda slow lorises (N. coucang coucang) to N. bengalensis, (3) a skewed birth sex ratio in N. pygmaeus, and (4) a possible low survival rate of infant N. pygmaeus. Based on genetic comparisons to Nycticebus bengalensis, we propose that N. pygmaeus in southern China and northern Vietnam might have migrated from middle or southern Vietnam recently.

Keywords

Bengal slow loris pygmy slow loris population genetics mitochondrial control region 

References

  1. Avise, J. C. (1991). Ten unorthodox perspectives on evolution prompted by comparative population genetic findings on mitochondrial DNA. Annual Review of Genetics, 25, 45–69.PubMedGoogle Scholar
  2. Bandelt, H. J., Forster, P., Sykes, B. C., and Richards, M. B. (1995). Mitochondrial portraits of human populations using median networks. Genetics, 141, 743–753.PubMedGoogle Scholar
  3. Chen, J. H., Pan, D., Groves, C., Wang, Y. X., Narushima, E., Fitch-Snyder, H., et al. (2005). Molecular phylogeny of Nycticebus inferred from mitochondrial genes. International Journal of Primatolology, In press.Google Scholar
  4. Easteal, S. (1991). The relative rate of DNA evolution in primates. Molecular Biology and Evolution, 8, 115–127.PubMedGoogle Scholar
  5. Excoffier, L., and Yang, Z. (1999). Substitution rate variation among sites in mitochondrial hypervariable region of humans and chimpanzees. Molecular Biology and Evolution, 16, 1357–1368.PubMedGoogle Scholar
  6. Fitch-Snyder, H. (2000). Reproductive patterns in a breeding colony of pygmy lorises (Nycticebus pygmaeus) Measured by behavioral and physiological correlates of gonadal activity. San Diego: San Diego State University.Google Scholar
  7. Griffiths, R. C., and Tavare, S. (1994). Sampling theory for neutral alleles in a varying environment. Philosophical Transactions of the Royal Society of London Series. B-Biological Science, 344, 403–410.CrossRefGoogle Scholar
  8. Groves, C. P. (2001). Primate taxonomy. Washington, D.C: Smithsonian Institution Press.Google Scholar
  9. Jazin, E., Soodyall, H., Jalonen, P., Lindholm, E., Stoneking, M., and Gyllenstein, U. (1998). Mitochondrial mutation rate revisited: Hot spots and polymorphism. Nature Genetics, 18, 109–110.PubMedCrossRefGoogle Scholar
  10. Kumar, S., Tamura, K., Jakobsen, I. B., and Nei, M. (2001). MEGA2: molecular evolutionary genetics analysis software. Bioinformatics, 17, 1244–1245.PubMedCrossRefGoogle Scholar
  11. Li, W. H., and Graur, D. (1991). Fundamentals of molecular evolution. Sunderland, MA: Sinauer Associates.Google Scholar
  12. Lu, X. M., Fu, Y. X., and Zhang, Y. P. (2002). Evolution of mitochondrial cytochrome b pseudogene in genus Nycticebus. Molecular Biology and Evolution, 19, 2337–2341.PubMedGoogle Scholar
  13. Lu, X. M., Wang, Y. X., and Zhang, Y. P. (2001). Divergence and phylogeny of mitochondrial cytochrome b gene from species in genus Nycticebus. Zoology Research, 22, 93–98.Google Scholar
  14. Nei, M. (1987). Molecular evolutionary genetics. New York: Columbia University Press.Google Scholar
  15. Oxnard, C. E., Crompton, R. H., and Lieberman, S. S. (1990). The case of the prosimian primates. Seattle: University of Washington Press.Google Scholar
  16. Parsons, T. J., and Holland, M. M. (1998). Reply to Jazin et al. Nature Genetics, 18, 110.Google Scholar
  17. Parsons, T. J., Muniec, D. S., Sullivan, K., Woodyatt, N., Alliston-Greiner, R., Wilson, M. R., et al. (1997). A high observed substitution rate in the human mitochondrial DNA control region. Nature Genetics, 15, 363–368.PubMedCrossRefGoogle Scholar
  18. Raaum, R. L., Sterner, K. N., Noviello, C. M., Stewart, C. B., and Disotell, T. R. (2005). Catarrhine primate divergence dates estimated from complete mitochondrial genomes: Concordance with fossil and nuclear DNA evidence. Journal of Human Evolution, 48, 237–257.PubMedCrossRefGoogle Scholar
  19. Rozas, J., Sanchez-Delbarrio, X. M., and Rozas, R. (2003). DNASP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 19, 2496–2497.PubMedCrossRefGoogle Scholar
  20. Tajima, F. (1983). Evolutionary relationship of DNA sequences in finite populations. Genetics, 105, 437–460.PubMedGoogle Scholar
  21. Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123, 585–595.PubMedGoogle Scholar
  22. Tan, C. L., and Drake, J. H. (2001). Evidence of tree gouging and exudate eating in pygmy slow lorises (Nycticebus pygmaeus). Folia Primatologica, 72, 37–39.CrossRefGoogle Scholar
  23. Wang, S. (1998). China red data book of endangered animals. Beijing, Hong Kong, New York: Science Press.Google Scholar
  24. Watterson, G. A. (1975). On the number of segregating sites in genetical models without recombination. Theoretical Population Biology, 7, 256–276.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Deng Pan
    • 1
    • 2
    • 3
  • Jing-Hua Chen
    • 1
    • 2
    • 4
  • Colin Groves
    • 5
  • Ying-Xiang Wang
    • 6
  • Etsuo Narushima
    • 7
  • Helena Fitch-Snyder
    • 8
    • 11
  • Paul Crow
    • 9
  • Xiangyu Jinggong
    • 1
  • Vu Ngoc Thanh
    • 10
  • Oliver Ryder
    • 11
  • Leona Chemnick
    • 11
  • Hong-Wei Zhang
    • 2
  • Yun-Xin Fu
    • 2
    • 12
  • Ya-Ping Zhang
    • 1
    • 2
  1. 1.Laboratory of Cellular and Molecular Evolution, Kunming Institute of ZoologyChinese Academy of SciencesKunmingChina
  2. 2.Laboratory for Conservation and Utilization of Bio-resourcesYunnan UniversityKunmingChina
  3. 3.The Graduate SchoolChinese Academy of SciencesBeijingChina
  4. 4.School of Life ScienceShandong UniversityJinanChina
  5. 5.School of Archaeology & AnthropologyAustralian National UniversityCanberraAustralia
  6. 6.Department of Phylogensis and Evolution, Kunming Institute of ZoologyChinese Academy of SciencesKunmingChina
  7. 7.Ueno Zoological GardensTokyoJapan
  8. 8.Loris Conservation InternationalHanoiVietnam
  9. 9.Kadoorie Farm & Botanic Garden CorporationHongkongChina
  10. 10.Department of Vertebrate ZoologyVietnam National UniversityHanoiVietnam
  11. 11.Zoological Society of San DiegoSan DiegoUSA
  12. 12.Human Genetics CenterUniversity of Texas at HoustonHoustonUSA

Personalised recommendations