Advertisement

International Journal of Primatology

, Volume 27, Issue 6, pp 1495–1517 | Cite as

Plants Consumed by Eulemur fulvus in Comoros Islands (Mayotte) and Potential Effects on Intestinal Parasites

  • A. Nègre
  • L. TarnaudEmail author
  • J. F. Roblot
  • J. C. Gantier
  • J. Guillot
Article

The study of self-medication among animals—zoopharmacognosy—is founded on observations that suggest that wild animals use plants with specific biological properties that may be beneficial to them. To verify whether self-vermifugation occurs among Eulemur fulvus in the wild, we studied their feeding behavior in both the dry and humid forests of Mayotte (Comoros Islands). We used the focal individual sampling method over an annual cycle. We conducted a complementary study during the 2-mo mating season, via the scan sampling method (at 10-min intervals). Among the 29 plant species brown lemurs consumed, we tested 16 in vitro as antiparasitic agents on 3 experimental parasite models (Rhabditis pseudoelongata, Trichomonas vaginalis, Entamoeba invadens). We obtained crude extracts to be tested after 2 successive chemical extractions (ethyl acetate and methanol), and 7 of them, belonging to 4 different plant species, showed an antiparasitic property: lemurs consumed Annona squamosa and Mimusops comorensis in large amounts, but ingested Ixora cremixora and Syzygium jambos sporadically. The 4 plants were active on the flagellate but only one of them (Ixora cremixora) also demonstrated antinematode properties. Humans use 2 of the plants as intestinal antiparasitic agents in traditional medicine and include numerous other plants in the diet. The relative lake of amoebas and flagellates in stools of Eulemur fulvus may be related to the consumption of plants with antiprotozoal properties. Nevertheless, in the absence of specific behavior that could be linked to a voluntary therapeutic action during our study, self-vermifugation in Eulemur fulvus remains elusive.

Key words

antiparasitic property Eulemur fulvus feeding behavior zoopharmacognosy 

Notes

ACKNOWLEDGMENT

The French Ministry of the Environment (ECOFOR-MNHN convention 2000.18) and the French Ministry of Agriculture funded our research. We thank the Conservatoire de l’Espace Littoral et des Rivages Lacustres for allowing us to conduct the study and Service Environnement et Forêt de la Direction de l’Agriculture et de la Forêt de Mayotte for providing the field facilities. We thank J. N. Labat, A. Hladik, A. Pibot, and F. Bartelat for their help in the identification of the botanical species. We thank R. Hocquemiller and F. Roblot from the Laboratoire de Chimie des Substances Naturelles of Paris XI University. We thank M. Hladik, B. Simmen, S. Krief and 2 anonymous reviewers for their constructive remarks on the article. We express special thanks to J. Maccario for his indispensable help with the statistical data.

REFERENCES

  1. Aderibigbe, A. O., Emudianughe, T. S., and Lawal, B. A. S. (2001). Evaluation of the Antidiabetic Action of Mangifera indica in Mice. Phytother. Res. 15: 456–458.PubMedCrossRefGoogle Scholar
  2. Adjanohoun, E. J., Adjakaidje, V., Ahyi, M. R. A., Aké Assi, L., Akoegninou, A., D’Almeiria, J., Apovo, F., Boukef, K., Shadare, M., Cusset, G., Dramane, K., Meyme, J., Gassita, J. N., Gbaguidi, N., Goudote, E., Guinko, S., Houngnon, P., Issa, L. O., Keita, A., Kiniffo, H. V., Kone-Bamba, D., Musampa Nseyya, A., Saadou, M., Sodogandji, T., de Souza, S., Tchabi, A., Zinsou Dossa, C., and Zohoun, T. (1989). Médecine traditionnelle et pharmacopée. Contribution aux études ethnobotaniques et floristiques en République Populaire du Bénin. Agence de Coopération Culturelle et Technique, Paris.Google Scholar
  3. Adjanohoun, E. J., Ake Asse, L., Ali, A., Eyme, J., Guinko, S., Kayonga, A., Keita, A., and Lebras, M. (1982). Médecine traditionnelle et pharmacopée. Contribution aux études ethnobotaniques et floristiques aux Comores. 2nde ed., Agence de Coopération Culturelle et Technique, ParisGoogle Scholar
  4. Adjanohoun, E. J., Aké Assi, L., Eymé, J., Gassita, J. N., Goudoté, E., Guého, J., Ip, F. S. L., Jackaria, D., Kalachand, S. K. K., Keyta, A., Koudogbo, B., Landreau, D., Owadally, A. W., and Soopramanien, A. (1983). Médecine traditionnelle et pharmacopée. Contribution aux études ethnobotaniques et floristiques à Maurice (Iles Maurice et Rodrigues). Agence de Coopération Culturelle et Technique, Paris.Google Scholar
  5. Altmann, J. (1974). Observational study of behaviour: Sampling methods. Behaviour 49: 227–267.Google Scholar
  6. Ambasta, A., and Shri, S. P. (1994). The useful plants of India. Publications and Informations Directorate (third edition), New Delhi, CSIR.Google Scholar
  7. Amorin, A., Borda, H. R., Carauta, J. P. P., Lopes, D., and Kaplan M. A. C. (1999). Anthelmintic activity of the latex of Ficus species. J. Ethnopharmacol. 64: 255–258.PubMedCrossRefGoogle Scholar
  8. Athanasiadou, S., Kyriazakis, I., Jackson, F., and Coop, R. L. (2001). Direct anthelmintic effects of condensed tannins towards different gastrointestinal nematodes of sheep: In vitro and in vivo studies. Vet. Parasitol. 99: 205–219.PubMedCrossRefGoogle Scholar
  9. Baer, J. G. (1935). Etude de quelques helminthes de Lémuriens. Rev. Suisse Zool. 12: 275–291.Google Scholar
  10. Baylis, H. A., and Daubney, R. (1922). Report on the parasitic nematodes in the collection of the zoological survey in India. Mem. Indian Mus. VII: 263–347.Google Scholar
  11. Begum, S., Wahab, A., Siddiqui, B. S., and Qamar, F. (2000). Nématicidal Constituents of the Aerial Parts of Lantana camara. J. Nat. Prod. 63: 765–767.PubMedCrossRefGoogle Scholar
  12. Birkinshaw, C. R. (1999). Use of millipedes by black lemurs to anoint their bodies. Folia Primatol. 70: 170–171.PubMedCrossRefGoogle Scholar
  13. Boiteau, P., and Allorge-Boiteau, L. (1993). Plantes médicinales de Madagascar. Paris, Karthala edition.Google Scholar
  14. Bories, C. (1993). Anthelmintic assays. In Rasaonaivo, P., and Ratsimamanga-Urverg, S. (eds.), Biological Evaluation of Plants with Reference to the Malagasy Flora. Monograph prepared for the IFS-NAPREGA workshop on bioassays, Antanarivo, Madagascar, pp. 80–83.Google Scholar
  15. Bories, C., Loiseau, P., Cortes, D., Myint, S. H., Hocquemiller, R., Gayral, L. P., Cave, A., and Laurens A. (1991). Antiparasitic activity of Annona muricata and Annona cherimolia seeds. Planta Med. 57: 434–436.PubMedGoogle Scholar
  16. Carrai, V., Borgognini-Tardi, S. M., Huffman, M. A., and Bardi, M. (2003). Increase in tannin consumption by sifaka (Propithecus verreauxi verreauxi) females during the birth season: A case for self-medication in prosimians? Primates 44: 61–66.PubMedGoogle Scholar
  17. Chabaud, A.G., Brygoo, E. E., and Petter A. J. (1964). Les nématodes parasites des lémuriens malgaches (V). Nématodes de Daubentonia madascariensis. Vie Milieu 17: 205–212.Google Scholar
  18. Chabaud, A.G., Brygoo, E. E., and Petter A. J. (1965). Les nématodes parasites des lémuriens malgaches (VI). Description de six nouvelles espèces. Ann. Parasitol. 40: 181–214.Google Scholar
  19. Chabaud, A.G., and Petter, A. J. (1958). Les nématodes parasites des lémuriens malgaches (I). Mem. Inst. Sci. Madagascar. Série A XII: 139–157.Google Scholar
  20. Coe, F. G., and Anderson, G. J. (1996). Screening of medicinal plants used by the Garifuna of Eastern Nicaragua for bioactive compounds. J. Ethnopharmacol. 53: 29–50.PubMedCrossRefGoogle Scholar
  21. Coiffier, O. (2000). Contribution à l’étude des helminthoses digestives des lémuriens appartenant aux genres Lemur et Eulemur, au parc zoologique de Tsimbazaza, Madagascar. Report, Maisons-Alfort, Veterinary School.Google Scholar
  22. Cousins, D., and Huffman, M. A. (2002). Medicinal properties in the diet of gorillas—an ethnopharmacological evaluation. Afr. Study Monogr. 23: 65–89.Google Scholar
  23. Diamond, L. S. (1957). The establishment of various trichomonads of animals and man in axenic cultures. J. Parasitol. 43: 488–490.PubMedCrossRefGoogle Scholar
  24. Djipa, C. D., Delmee, M., and Quentin-Leclercq, J. (2000). Antimicrobial activity of bark extracts of Syzygium jambos (L.) alston (Myrtaceae). J. Ethnopharmacol. 71: 307–313.PubMedCrossRefGoogle Scholar
  25. El Tahir, A., Satti, G. M. H., and Khalib, S. A. (1999). Antiplasmodial activity of selected Sudanese medicinal plants with emphasis on Maytenus senegalensis (Lam.) Exell. J. Ethnopharmacol. 64: 227–233.PubMedCrossRefGoogle Scholar
  26. Fagbenro-Beyioku, A. F., Oyibo, W. A., and Anuforom, B. C. (1998). Desinfectant/antiparasitic activities of Jatropha curcas. East Afr. Med. J. 75: 508–511.PubMedGoogle Scholar
  27. Ganzhorn, J. U. (1988). Food partitioning among Malagashy primates. Oecologia 45: 436–450.CrossRefGoogle Scholar
  28. Glander, K. E. (1994). Nonhuman Primate Self-medication with Wild Plant Foods. In Etkin, N. L. (ed.), Eating on the Wild Side. The University of Arizona Press, Tucson and London, pp. 227–239.Google Scholar
  29. Goldstein, J. L., and Swain, T. (1963). Changes in tannins in ripening fruits. Phytochemistry 2: 371–383.CrossRefGoogle Scholar
  30. Gomez, M. S., Gracenea, M., Gosalbez, P., Feliu, C., Ensenat, C., and Hidalgo, R. (1992). Detection of oocysts of cryptosporidium in several species of monkeys and in one prosimian species at the Barcelona Zoo. Parasitol. Res. 78: 619–620.PubMedCrossRefGoogle Scholar
  31. Hansson, A., Veliz, G., Naquira, C., Amren, M., Arroyo, M., and Arevalo, G. (1986). Preclinical and clinical studies with latex ficus glabrata HBK, a traditional intestinal anthelmintic in the amazoninan area. J. Ethnopharmacol. 17: 105–138.PubMedCrossRefGoogle Scholar
  32. Hecberg, S., Chauliac, M., Galan, P., Devanlay, M., Zohoun, I., Agboton, Y., Soustre, Y., Bories, C., Christides, J. P., Potier de Courcy, G., Masse-Raimbault, A. M., and Dupin, H. (1986). Relationship between anaemia, iron and folacin deficiency, haemoglobinopathies and parasitic infection. Hum. Nutr. Clin. Nutr. 40C: 371–379.Google Scholar
  33. Hladik, C. M., Simmen, B., Ramasiarisoa, P., and Hladik, A. (2000). Rôle des produits secondaires (tannins et alcaloïdes) des espèces forestières de l’est de Madagascar face aux populations animales. In Lourenço, W. R., and Goodman, S. M. (eds.), Diversité et endémisme à Madagascar. Mémoires de la Société de Biogéographie, Paris, pp. 105–114.Google Scholar
  34. Huffman, M. A. (1997). Current evidence for self-medication in primates: A multidisciplinary perspective. Yearbk. Phys. Anthropol. 40: 171–200.CrossRefGoogle Scholar
  35. Huffman, M. A., and Caton, J. M. (2001). Self-induced increase of gut motility and the control of parasitic infections in wild chimpanzees. Int. J. Primatology 22: 329–346.CrossRefGoogle Scholar
  36. Huffman, M. A., Elias, R., Balansard, G., Ohigashi, H., and Nansen, P. (1998a). L’automédication chez les singes anthropoïdes: Une étude multidisciplinaire sur le comportement, le régime alimentaire et la santé. Primatology 1: 179–204.Google Scholar
  37. Huffman, M. A., Gotoh, S., Izutsu, D., Koshimizu, K., and Kalunde, M. S. (1993). Further observations on the use of the medicinal plant, Vernonia amygdalina (Del) by a chimpanzee, its possible effect on parasite load, and its phytochemistry. Afr. Study Monogr. 14: 227–240.Google Scholar
  38. Huffman, M. A., Ohigashi H., Kawanaka, M., Page, J. E., Kirby G. C., Gasquet, M., Murakami, A., and Koshimizu, K. (1998b). African great ape self-medication: A new paradigm for treating parasite disease with natural medicines? In: Ebizuka, Y. (ed.), Towards Natural Medicine Research in the 21st Century. Elsevier Science, Amsterdam, pp. 113–123.Google Scholar
  39. Huffman, M. A., Page, J. E., Sukhdeo, M. V. K, Gotoh, S., Kalunde, M. S., Chandrasiri, T., and Towers, G. H. N. (1996). Leaf-swallowing by chimpanzees, a behavioural adaptation for the control of strongyle nematode infections. Int. J. Primatol. 17: 475–503.Google Scholar
  40. Huffman, M. A., and Seifu, M. (1989). Observations on the illness and consumption of a possibly medicinal plant Vernonina amygdalina (Del.), by a wild chimpanzee in the Mahale Mountains National Park, Tanzania. Primatology 30: 51–63.Google Scholar
  41. Huffman, M. A., and Wrangham, R. W. (1994). The diversity of medicinal plant use by chimpanzees in the wild. In Wrangham, R. W., McGrew, W. C., De Wall, F. B., and Heltne, P. G. (eds.), Chimpanzee Cultures. Harvard University Press, Cambridge, MA, pp. 129–148.Google Scholar
  42. Jansen, D. H. (1978). Complications in interpreting the chemical defences of trees against tropical arboreal plant-eating vertebrates. In Montgomery, G. G. (ed.), The Ecology of Arboreal Folivores. Smithsonian Institute Press, Washington, DC, pp. 73–84.Google Scholar
  43. Kothar, H. M., Mendki, P. S., Sadan, S. V. G. S., Jha, S. R., Upasani, S. M., and Maheshwari, V. L. (2001). Antimicrobial and pesticidal activity of partially purified flavonoids of Annona squamosa. Pest Manage. Sci. 23: 759–784.Google Scholar
  44. Kreier, J. P. (1978). Parasitic Protozoa, Tome II. Intestinal Flagellates, Histomonads, Trichomonads, Amoeba, Opalinids and Ciliates. Academic Press, New York.Google Scholar
  45. Krief, S. (2003). Métabolites secondaires des plantes et comportement animal: surveillance sanitaire et observations de l’alimentation de chimpanzés (Pan troglodytes schweinfurthii) en Ouganda, activités biologiques et étude chimique de plantes consommées. Ph.D. Muséum National d’Histoire Naturelle, Paris.Google Scholar
  46. Le Grand, A. (1989). Les phytoth érapies anti-infectieuses de la foret-savane, Sénégal (Afrique occidentale) III: un résumé des substances phytochimiques et de l’activité anti-microbienne de 43 espèces. J. Ethnopharmacol. 25: 315–338.Google Scholar
  47. Loiseau, P. M., Bories, C., and Sanon, A. (2002). The chitinase system from Trichomonas vaginalis as a potential target for antimicrobial therapy of urogenital trichomoniasis. Biomed. Pharmacother. 56: 503–510.PubMedCrossRefGoogle Scholar
  48. Nègre, A. (2003). Activité antiparasitaire des plantes consommées par le lémurien de Mayotte (Eulemur fulvus) en relation avec le niveau d’infestation parasitaire en milieu naturel. Thèse vétérinaire, Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort.Google Scholar
  49. Overdorff, D. J. (1992). Differentials patterns in flower feeding by Eulemur fulvus fulvus and Eulemur rubriventer in Madagascar. Am. J. Primatol. 28: 191–203.CrossRefGoogle Scholar
  50. Overdorff, D. J. (1993). Similarities, differences and seasonal patterns in the diet of Eulemur rubriventer and Eulemur fulvus rufus in the Ranomafana National Park, Madagascar. Int. J. Primatol. 14: 721–753.CrossRefGoogle Scholar
  51. Page, J. E., Huffman, M. A, Smith, V., and Towers, G. H. N. (1997). Chemical basis for Aspilia leaf-swallowing by chimpanzees: A reanalysis. J. Chem. Ecol. 23: 2211–2225.CrossRefGoogle Scholar
  52. Pascal, O., and Labat, J. N. (2002). Plantes et forêts de Mayotte. Publications scientifiques, Muséum Nat. Hist. Nat., Paris.Google Scholar
  53. Pereira, M. E., and Kappeler, P. M. (1997). Divergent systems of agonistic behaviour in lemurid primates. Behaviour 134: 225–274.Google Scholar
  54. Pernet, R., and Meyer, G. (1957). Pharmacopée de Madagascar. L’Institut de Recherche Scientifique Tananarive-Tsimbazaza, Paris.Google Scholar
  55. Rodriguez, E., Aregullin, M., Nishida, T., Uehara, S., Wrangham, R.W., Abramowski, Z., Finlayson, A., and Towers, G. H. N. (1985). Thiarubin A, a bioactive constituent of Aspilia (Asteraceae) consumed by wild chimpanzees. Experientia 41: 419–420.PubMedCrossRefGoogle Scholar
  56. Rodriguez, E., and Wrangham, R. (1993). Zoopharmacognosy: The use of medicinal plants by animals. In Downun, R. K., Romeo, J. T., and Stafford, H. A. (eds.), Phytochemical Potential of Tropical Plants, Vol. 27. Plenum Press, New York, pp. 89–105.Google Scholar
  57. Ross, S. A., Megalla, S. E., Bishay, D. W., and Awad, A. H. (1980). Studies for determining antibiotic substances in some Egyptian plants. Part I. Screening for antimicrobial Activity. Fitoterapia 51: 303–308.Google Scholar
  58. Sahpaz, S., Bories, C., Loiseau, P. M., Cortes, D., Hocquemiller, R., Laurens, A., and Cave, A. (1994). Cytotoxic and antiparasitic activity from Annona senegalensis seeds. Planta Med. 60: 538–540.PubMedGoogle Scholar
  59. Sharma, R. K., and Behari, M. (1992). Screening of the compounds isolated from the leaves of Annona squamosa for antibacterial activity. Acta Cienc. Indica Chem. 18: 249–252.Google Scholar
  60. Simmen, B., Hladik, A., and Ramasiarisoa, P. (2003). Food intake and dietary overlap in native Lemur catta and Propithecus verreauxi and introduces Eulemur fulvus at Berenty, Southern Madagascar. Int. J. Primatol. 35: 949–968.CrossRefGoogle Scholar
  61. Simmen, B., Hladik, A., Ramasiarisoa, P. L., Iaconelli, S., and Hladik, C. M. (1999). Taste discrimination in lemurs and others primates, and the relationships to distribution of plant allelochemicals in different habitats of Madagascar. In Rakotosamimanana, B., Rasamimanana, H., Ganzhorn, J. U., and Goodman, S. M. (eds.), New Directions in Lemur Studies. Kluwer Academic/Plenum, New York, pp. 201–219.Google Scholar
  62. Slowing, K., Carretero, E., and Villar, A. (1994). Anti-inflammatory activity of leaf extracts of Eugenia jambos in rats. J. Ethnopharmacol. 43: 9–11.PubMedCrossRefGoogle Scholar
  63. Smith, M., and Merrovitch, E. (1985). Primates as a source of Entamoeba histolytica their zymodeme status and zoonotic potential. J. Parasitol. 71: 751–756.PubMedCrossRefGoogle Scholar
  64. Sussman, R. W. (1974). Ecological distinctions in sympatric species of lemur. In Martin, R. D., Doyle, G. A., and Walker, A. C. (eds.), Prosimian Biology. Ducworth, London, pp. 75–108.Google Scholar
  65. Sussman, R. W. (1977). Feeding behavior of Lemur catta and Lemur fulvus. In Clutton-Brock, T. H. (ed.), Primate Ecology. New York, Academic Press, pp. 1–36.Google Scholar
  66. Tarnaud, L. (2004a). Ontogeny of feeding behavior of Eulemur fulvus in the dry forest of Mayotte. Int. J. Primatol. 25: 803–824.CrossRefGoogle Scholar
  67. Tarnaud, L. (2004b). L’ontogenèse du comportement alimentaire du primate Eulemur fulvus en forêt sèche (Mayotte, archipel des Comores) en relation avec le lien mère-jeune et la disponibilité des ressources alimentaires. Ph.D. Université René Descartes. Ed. ANRT, Paris.Google Scholar
  68. Tattersall, I. (1977). Ecology and behavior of Lemur fulvus mayottensis (Primates, Lemuriformes). Anthropol. Pap. Am. Mus. Nat. Hist. 54: 425–482.Google Scholar
  69. Taylor, A. E. R., and Baker, J. R. (1968). The Cultivation of Parasites In Vitro. Blackwell Scientific Publications, Oxford.Google Scholar
  70. Valderama, X., Robinson, J. G., Attygalle, A. B., and Eisner, T. (2000). Seasonal anointment with millipedes in a wild primate: A chemical defense against insects. J. Chem. Ecol. 26(12): 2781–2790.CrossRefGoogle Scholar
  71. Valdizan, H., and Maldonado, A. (1922). La Medicina Popular Peruana. Tomo II. Imprenta Tirres Aguirre, Lima, pp. 137–138.Google Scholar
  72. Vasey, N. (2000). Niche separation in Varecia variegata rubra and Eulemur fulvus albifrons: I. Interspecific patterns. Am. J. Phys. Anthropol. 112: 411–431.PubMedCrossRefGoogle Scholar
  73. Vasey, N. (2002). Niche separation in Varecia variegata rubra and Eulemur fulvus albifrons: II. Intraspecific patterns. Am. J. Phys. Anthropol. 118: 169–183.PubMedCrossRefGoogle Scholar
  74. Watt, J. M., and Breyer-Brandwijk, M. G. (1962). The Medicinal and Poisonous Plants of Southern and Eastern Africa, 2nd ed. E. S. Livingstone, London.Google Scholar
  75. Wrangham, R. W., and Nishida, T. (1983). Aspilia spp. leaves: A puzzle in the feeding behavoir of wild chimpanzees. Primates 24: 276–282.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • A. Nègre
    • 1
  • L. Tarnaud
    • 2
    • 5
    Email author
  • J. F. Roblot
    • 3
  • J. C. Gantier
    • 4
  • J. Guillot
    • 1
  1. 1.Service de Parasitologie-Mycologie de l’Ecole Nationale Vétérinaire de Maisons-AlfortMaisons-Alfort CedexFrance
  2. 2.UMR 5145, Laboratoire d’Ecoanthropologie et d’EthnobiologieParisFrance
  3. 3.Laboratoire de Chimie des Substances NaturellesUniversité Paris SudParisFrance
  4. 4.Laboratoire de Parasitologie et de MycologieUniversité Paris SudParisFrance
  5. 5.Laboratory of Human Evolution Studies, Graduate School of ScienceKyoto University, Sakyo-kuKyotoJapan

Personalised recommendations