International Journal of Primatology

, Volume 27, Issue 3, pp 699–712 | Cite as

Phylogeny and Biogeography of Gibbons: A Dispersal-Vicariance Analysis

  • Helen J. Chatterjee

Phylogenetic relationships within Hylobatidae are controversial. Numerous studies based on molecular, morphological and behavioral characteristics have provided conflicting results. I reanalyzed published cytochrome b gene sequence data to provide a new estimate of gibbon phylogeny. My results indicate that Nomascus, Symphalangus and Hoolock are successively more closely related to Hylobates. Molecular clock analyses provide estimates of divergence times within Hylobatidae, indicating that the radiation dates to ca. 10.5 million years ago. Scientists have little understanding of the biogeographic history of gibbons, largely because of a sparse fossil record. I combined the estimate of gibbon phylogeny with distribution data in a dispersal-vicariance analysis and present a new scenario for the pattern and timing of gibbon radiation.


biogeography dispersal-vicariance analysis gibbons Hylobatidae phylogeny Southeast Asia 



I thank Adrian Lister for his constructive comments on early versions of the manuscript and several useful discussions. I also thank Marcello Ruta, Leslie Aiello, and Mark Thomas. I especially thank Ian Barnes for comments on the manuscript.


  1. Brandon-Jones, D., Eudey, A. A., Geissmann, T., Groves, C. P., Melnick, D. J., Morales, J. C., Shekelle, M., and Stewart, C. B. (2004). Asian primate classification. Int. J. Primatol. 25: 97–164.CrossRefGoogle Scholar
  2. Chatterjee, H. J. (2001). Phylogeny and Biogeography of Gibbons, Genus Hylobates. PhD Thesis, University of London.Google Scholar
  3. Chivers, D. J. (1977). The lesser apes. In Prince Rainier III of Monaco Bourne, G. H. (eds.), Primate Conservation. Academic Press, New York, pp. 539–598.Google Scholar
  4. Creel, N., and Preuschoft, H. (1984). Systematics of the lesser apes: A quantitative taxonomic analysis of craniometric and other variables. In Preuschoft, H., Chivers, D. J., Brockelman, W. Y., and Creel, N. (eds.), The Lesser Apes. Evolutionary and Behavioural Biology. Edinburgh University Press, Edinburgh, pp. 562–613.Google Scholar
  5. Felsenstein, J. (1995). PHYLIP: Phylogeny Inference Package Version 3.57c. University of Washington, Seattle, WA.Google Scholar
  6. Garza, J. C., and Woodruff, D. S. (1992). A phylogenetic study of the gibbons (Hylobates) using DNA obtained noninvasively from hair. Mol. Phylogenet. Evol. 1: 202–210.PubMedCrossRefGoogle Scholar
  7. Geissmann, T. (1995). Gibbon systematics and species identification. Int. Zoo News 42(8): 467–501.Google Scholar
  8. Geissmann, T. (2002). Taxonomy and evolution of gibbons. In Soligo, C., Anzenberger, G., and Martin, R. D. (eds.), Anthropology and Primatology into the Third Millennium: The Centenary Congress of the Zürich Anthropological Institute (Evolutionary Anthropology Vol. 11, Suppl. 1). New York: Wiley-Liss, New York, pp. 28–31.Google Scholar
  9. Goodman, M., Porter, C. A., Czelusniak, J., Page, S. L., Schneider, H., Shoshani, J., Gunnell, G., and Groves, C. P. (1998). Toward a phylogenetic classification of primates based on DNA evidence complemented by fossil evidence. Mol. Phylogenet. Evol. 9(3): 585–598.PubMedCrossRefGoogle Scholar
  10. Groves, C. P. (1972). Systematics and phylogeny of gibbons. In Rumbaugh, D. M. (ed.), Gibbon and Siamang. Vol. 1, Karger, Basel, pp. 1–89.Google Scholar
  11. Haimoff, E. H., Gittins, S. P., Whitten, A. J., and Chivers, D. J. (1984). A phylogeny and classification of gibbons based on morphology and ethology. In Preuschoft, H., Chivers, D. J., Brockelman, W. Y., and Creel, N. (eds.), The Lesser Apes. Evolutionary and Behavioural Biology. Edinburgh University Press, Edinburgh, pp. 614–632.Google Scholar
  12. Hall, L. M., Jones, D., and Wood, B. (1996). Evolutionary relationships between gibbon subgenera inferred from DNA sequence data. Biochem. Soc. Trans. 24, 416.Google Scholar
  13. Hall, L. M., Jones, D., and Wood, B. (1998). Evolution of the gibbon subgenera inferred from cytochrome b DNA sequence data. Mol. Phylogenet. Evol. 10(3): 281–286.PubMedCrossRefGoogle Scholar
  14. Hall, R. (1998). The plate tectonics of Cenozoic SE Asia and the distribution of land and sea. In Hall, R., and Holloway, J. D. (eds.), Biogeography and Geological Evolution of SE Asia. Backbuys, Leiden, pp. 99–131.Google Scholar
  15. Hayashi, S., Hayasaka, K., Takenaka, O., and Horai, S. (1995). Molecular phylogeny of gibbons inferred from mitochondrial DNA sequences: Preliminary report. J. Mol. Evol. 41: 359–365.PubMedCrossRefGoogle Scholar
  16. Heaney, L. R. (1991). A synopsis of climatic and vegetational change in Southeast Asia. Climatic Change 19: 53–61.CrossRefGoogle Scholar
  17. Higgins, D. G., and Sharp, P. M. (1988). CLUSTAL: A package for performing multiple sequence alignments on a microcomputer. Gene 73: 237–244.PubMedCrossRefGoogle Scholar
  18. Jablonski, N. G. (1993a). Quaternary environments and the evolution of primates in Eurasia, with notes on two specimens of fossil Cercopithecidae from China. Folia Primatol. 60: 118–132.PubMedCrossRefGoogle Scholar
  19. Maddison, W. P., and Maddison, D. R. (1992). MacClade. Analysis of Phylogeny and Character Evolution. Version 3.0.1. MA: Sinauer Associates, Sunderland.Google Scholar
  20. Morley, R. J., and Flenley, J. R. (1987). Late Cainozoic vegetational and environmental changes in the Malay Archipelago. In Whitmore, T. C. (ed.), Biogeographical Evolution of the Malay Archipelago. Oxford Monographs on Biogeography, 4. Oxford University Press, Oxford, pp. 50–59Google Scholar
  21. Porter, C. A., Page, S. L., Czelusniak, J., Schneider, H., Schneider, M. P. C., Sampaio, I., and Goodman, M. (1997). Phylogeny and evolution of selected primates as determined by sequences of the ɛ-globin locus and 5′ flanking regions. Int. J. Primatol. 18(2): 261–295.CrossRefGoogle Scholar
  22. Raaum, R. L., Sterner, K. N., Noviello, C. M., Stewart, C., and Disotell, T. R. (2005). Catarrhine primate divergence dates estimated from complete mitochondrial genomes: concordance with fossil and nuclear DNA evidence. J. Hum. Evol. 48: 237–257.PubMedCrossRefGoogle Scholar
  23. Ronquist, F. (1996). DIVA Version 1.1. Computer program and manual available by anonymous FTP from Uppsala University ( or Scholar
  24. Ronquist, F. (1997). Dispersal-vicariance analysis: A new approach to the quantification of historical biogeography. System. Biol. 46(1): 195–203.CrossRefGoogle Scholar
  25. Swofford, D. L. (1993). PAUP: Phylogenetic Analysis Using Parsimony. Version 3.1.1. Illinois Natural History Survey, Champaign, IL.Google Scholar
  26. Tyler, D. E. (1993). The evolutionary history of the gibbon. In Jablonski, N. (ed.), Evolving Landscapes and Evolving Biotas of East Asia Since the Mid-Tertiary. Centre for Asian Studies, Hong Kong University, pp. 228–240.Google Scholar
  27. Wu, R. K., and Pan, Y. R. (1984). A Late Miocene gibbon-like primate from Lufeng, Yunnan Province. Acta Anthropol. Sinica 3: 193–200.Google Scholar
  28. Wu, R. K., and Pan, Y. R. (1985). Preliminary observations on the cranium of Laccopithecus robustus from Lufeng, Yunnan with reference to its phylogenetic relationship. Acta Anthropol. Sinica 4, 7–12.Google Scholar
  29. Zehr, S., Ruvolo, M., Heider, J., and Mootnick, A. (1996). Gibbon phylogeny inferred from mitochondrial DNA sequences. Am. J. Phys. Anthropol. (Suppl) 22: 251.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Grant Museum of Zoology and Comparative Anatomy, Department of BiologyUniversity College LondonLondonU.K

Personalised recommendations