Composition and Nutritional Characteristics of Fungi Consumed by Callimico goeldii in Pando, Bolivia

  • Amy M. HansonEmail author
  • Mary Beth Hall
  • Leila M. Porter
  • Barbara Lintzenich

Though ≥22 species of Primates consume fungi, most do so at low rates, comprising <5% of their feeding time. Goeldi's monkeys (Callimico goeldii), spend up to 29% of their feeding time year-round consuming fungal sporocarps, the fruiting bodies of fungi. We provide comprehensive data on the nutritional characteristics of 4 species of fungi consumed by Callimico goeldii (Ascopolyporus polyporoides, Ascopolyporus polychrous, Auricularia auricula, and Auricularia delicata). The composition of the fungi is similar to that of other fungi: predominantly fiber (66.2–83.0% dry matter) with small amounts of sugar (2.0–5.6% dry matter) and crude fat (0.9–1.6% dry matter). Though the crude protein content is substantial (5.5–13.4% dry matter), much of the nitrogen in the fungi is not likely to be available to Callimico goeldii because it is associated with indigestible food components or is in nonprotein form. The mineral content of the fungi are within the normal range for fungi generally and the calcium-to-phosphorus ratio is low (0.07–0.25). Fungi appear to be a low-quality food resource for Callimico goeldii and may contribute to their relatively large home ranges and low population density compared to other Callitrichinae. Research on the ability of Callimico goeldii to digest fungi is needed to understand fully the nutritional value of fungi to them. We discuss adaptations Callimico goeldii may have for improving their ability to obtain nutrients from fungi and potential ecological correlates of mycophagy.


Ascopolyporus Auricularia Callimico Callitrichinae fungus mycophagy nutrition sporocarp 



We owe particular thanks to the late Dr. Sue Crissey, whose technical assistance and guidance were critical during the early stages of development of this project. We also thank Drs. Charles Janson and Patricia Wright for their help in launching the study. We thank Drs. Kathy Hodge (Cornell University), Peter Roberts (Royal Botanic Gardens, Kew, England), and Jean-Paul Schmidt (Field Museum, Chicago) for identifying the fungi and Dr. Lynn Clark (University of Iowa) for identifying the bamboo hosts. We are grateful for the cooperation and support provided by the Herbario Nacional de Bolivia and Colecciòn Boliviana de Fauna which enabled the research on Goeldi's monkeys in Bolivia. We appreciate comments on earlier drafts of this manuscript by Richard Bergl and Drs. Nancy Lou Conklin-Brittain, Ellen Dierenfeld, Patrick Thomas, and Peyton West, and an anonymous reviewer. The Chicago Zoological Society, the Margot Marsh Biodiversity Foundation, Primate Conservation Inc., and The Explorer's Club generously provided funding for research on the nutrient content of fungi consumed by Callimico goeldii


  1. AOAC (1995). Official Methods of Analysis, 16th ed., Association of Official Analytical Chemists, Arlington, VA.Google Scholar
  2. Barker, D., Fitzpatrick, M. P., and Dierenfeld, E. S. (1998). Nutrient composition of selected whole invertebrates. Zoo Biol. 17: 123–134.CrossRefGoogle Scholar
  3. Barton, R. A., and Whiten, A. (1994). Reducing complex diets to simple rules: Food selection by olive baboons. Behav. Ecol. Sociobiol. 35: 283–293.CrossRefGoogle Scholar
  4. Barton, R. A., Whiten, A., Byrne, R. W., and English, M. (1993). Chemical composition of baboon plant foods: Implications for the interpretation of intra- and interspecific differences in diet. Folia Primatol. 61: 1–20.PubMedGoogle Scholar
  5. Bearder, S. K., and Martin, R. D. (1980). Acacia gum and its use by bushbabies (Galago senegalensis (Primates: Lorisidae). Int. J. Primatol. 1: 103–128.CrossRefGoogle Scholar
  6. Bermejo, M., Illera, G., and Sabater, P. (1994). Animals and mushrooms consumed by Bonobos (Pan paniscus): New records from Lilungu (Ikela), Zaire. Int. J.Primatol. 15: 879–898.Google Scholar
  7. Bozinovic, F., and Muñoz-Pedreros, A. (1995). Nutritional ecology and digestive responses of an omnivorous-insectivorous rodent (Abrothrix longipilis) feeding on fungus. Physiol. Zool. 68: 474–489.Google Scholar
  8. Calvert, J. J. (1985). Food selection by western gorillas (G. g. gorilla) in relation to food chemistry. Oecologia 65: 236–256.CrossRefGoogle Scholar
  9. Chapman, C. A., and Chapman, L. J. (1991). The foraging itinerary of spider monkeys: When to eat leaves? Folia Primatol. 56: 162–166.CrossRefGoogle Scholar
  10. Chapman, C. A., Chapman, L. J., Rode, K. D., Hauck, E. M., and McDowell, L. R. (2003). Variation in the nutritional value of primate foods: Among trees, time periods, and areas. Int. J. Primatol. 24: 317–333.CrossRefGoogle Scholar
  11. Chivers, D. J., and Hladik, C. M. (1980). Morphology of the gastrointestinal tract of primates: Comparisons with other mammals in relation to diet. J. Morphol. 166: 337–386.PubMedCrossRefGoogle Scholar
  12. Christen, A., and Geissmann, T. (1994). A primate survey in northern Bolivia, with special reference to Goeldi's monkey, Callimico goeldii. Int. J. Primatol. 17: 31–50.Google Scholar
  13. Claridge, A. W., and Cork, S. J. (1994). Nutritional value of hypogeal fungal sporocarps for the long-nosed potoroo (Potorous tridactylus), a forest-dwelling mycophagous marsupial. Austral. J. Zool. 42: 701–710.CrossRefGoogle Scholar
  14. Claridge, A. W., and May, T. W. (1994). Mycophagy among Australian animals. Austral. J. Ecol. 19: 251–275.CrossRefGoogle Scholar
  15. Claridge, A. W., Trappe, J. M., Cork, S. J., and Claridge, D. L. (1999). Mycophagy by small mammals in the coniferous forests of North America: Nutritional value of sporocarps of Rhizopogon vinicolor, a common hypogeous fungus. J. Comp. Physiol. B. 169: 172–178.PubMedCrossRefGoogle Scholar
  16. Coimbra-Filho, A. F., and Mittermeier, R. A. (1977). Tree-gouging, exudate-eating, and the short-tusked condition in Callithrix and Cebuella. In Kleiman, D. G. (ed.), The Biology and Conservation of the Callitrichinae, Smithsonian Institution Press, Washington, DC, pp. 105–115.Google Scholar
  17. Cords, M. (1990a). Mixed-species association of East African guenons: General patterns or specific examples? Am. J. Primatol. 21: 101–114.CrossRefGoogle Scholar
  18. Cords, M. (1990b). Vigilance and mixed-species association of some East African forest monkeys. Behav. Ecol. Sociobiol. 26: 297–300.CrossRefGoogle Scholar
  19. Cork, S. J., and Kenagy, G. J. (1989). Nutritional value of hypogeous fungus for a forest-dwelling ground squirrel. Ecology 70: 577–586.CrossRefGoogle Scholar
  20. Cornelius, C., Dandrifosse, G., and Jeuniaux, C. (1975). Biosynthesis of chitinases by mammals of the order carnivore. Biochem. Syst. Ecol. 3: 121–122.CrossRefGoogle Scholar
  21. Corrêa, K. M. (1995). Ecologia e comportamiento alimentar de um grupo de Aguis-da-Serra-Escuros (Callitrthrix aurita E. Geoffroy 1812) no Parque Estadual da Serra do Mar, Núcleo Cunha, São Paulo, Brasil. Master's thesis, Instituto de Ciéncias Biológica, Departamento de Zoologia, Universidad Federal de Minas Gerais, Minas Gerais, Brasil.Google Scholar
  22. Crissan, E. V., and Sands, A. (1978). Nutritional value. In Chang, S. T., and Hayes, W. A. (eds.), The Biology and Cultivation of Edible Mushrooms, Academic Press, New York, pp. 137–168.Google Scholar
  23. Cromwell, G. L. (1984). Feeding swine. In Church, D. C. (ed.), Livestock Feeds and Feeding, 2nd ed., O & B Books, Corvallis, OR, p. 399.Google Scholar
  24. Dubay, S. A. (2000). Mycophagy as a Nutritional Strategy for Small Mammals in the Rocky Mountains. PhD Thesis, Dept. of Zoology and Physiology, University of Wyoming, Laramie, WY.Google Scholar
  25. Emmons, L., and Feer, F. (1997). Neotropical Rainforest Mammals, The University of Chicago Press, Chicago.Google Scholar
  26. Encarnación, F., and Heymann, E. W. (1998). Body mass of wild Callimico goeldii. Folia Primatol. 69: 368–371.PubMedCrossRefGoogle Scholar
  27. Ferrari, S. F., Iwanaga, S., Ramos, E. M., Messias, M. R., Ramos, P. C. S., and da Cruz Neto, E. H. (1999). Expansion of the known distribution of Goeldi's monkey (Callimico goeldii) in south-western Brazilian Amazonia. Folia Primatol. 70: 112–116.CrossRefGoogle Scholar
  28. Ferrari, S. F., and Lopes, M. A. (1989). A re-evaluation of the social organization of the Callitrichidae, with reference to the ecological differences between genera. Folia Primatol. 52: 132–147.PubMedGoogle Scholar
  29. Ferrari, S. F., Lopes, M. A., and Krause, E. A. K. (1993). Brief communication: Gut morphology of Callithrix nigriceps and Saguinus labiatus from western Brazilian Amazonia. Am. J. Phys. Anthropol. 90: 487–493.PubMedCrossRefGoogle Scholar
  30. Ferrari, S. F., and Martins, E. S. (1992). Gummivory and gut morphology in two sympatric callitrichids (Callithrix emilae and Saguinus fuscicollis weddelli) from western Brazilian Amazonia. Am. J. Phys. Anthropol. 88: 97–1992.PubMedCrossRefGoogle Scholar
  31. Fleagle, J., Kay, R., and Anthony, M. (1997). Fossil new world monkeys. In Kay, R., Madden, R., Cifelli, R., and Flynn, J. (eds.), Vertebrate Paleontology in the Neotropics: The Miocene Fauna of La Venta, Columbia, Smithsonian Institution Press, Washington, DC, pp. 473–495.Google Scholar
  32. Fogel, R., and Trappe, J. M. (1978). Fungus consumption (mycophagy) by small mammals. Northw. Sci. 52: 1–30.Google Scholar
  33. Ford, S., and Davis, L. (1992). Systematics and body size: Implications for feeding adaptations in New World Monkeys. Am. J. Phys. Anthropol. 88: 415–468.PubMedCrossRefGoogle Scholar
  34. Fossey, D., and Harcourt, A. H. (1977). Feeding ecology of a free-ranging mountain gorilla (Gorilla gorilla beringei). In Clutton-Brock, T. H. (ed.), Primate Ecology, Academic Press, London, pp. 415–447.Google Scholar
  35. Ganzhorn, J., and Wright, P. (1994). Temporal patterns in primate leaf eating: The possible role of leaf chemistry. Folia Primatol. 63: 203–208.PubMedCrossRefGoogle Scholar
  36. Garber, P. A. (1980). Locomotor behavior and feeding ecology of the Panamanian tamarin (Saguinus oedipus geoffroyi, Callitrichinae, Primates). Int. J. Primatol. 1: 185–201.CrossRefGoogle Scholar
  37. Garber, P. A. (1984). Proposed nutritional importance of plant exudates in the diet of the Panamanian tamarin, Saguinus oedipus geoffroyi. Int. J. Primatol. 5: 1–15.CrossRefGoogle Scholar
  38. Garber, P. A. (2000). The behavioral ecology of mixed species troops of Callimico goeldii, Saguinus labiatus, and S. fuscicollis in northwestern Brazil. Am. J. Phys. Anthropol. Suppl. 30: 155.Google Scholar
  39. Garber, P., and Leigh, S. (2001). Patterns of positional behavior in mixed-species troops of Callimico goeldii, Saguinus labiatus, and Saguinus fuscicollis in northwestern Brazil. Am. J. Primatol. 54: 17–31.PubMedCrossRefGoogle Scholar
  40. Goering, H. K., and van Soest, P. J. (1970). Forage Fiber Analysis, Agricultural Handbook No. 379. Agricultural Research Service, U.S. Department of Agriculture.Google Scholar
  41. Goldizen, A. W., Mendelson, J., van Vlaardingen, M., and Terborgh, J. (1996). Saddleback tamarin (Saguinus fuscicollis) reproductive strategies: Evidence from a 13-year study of a marked population. Am. J. Primatol. 38: 57–83.CrossRefGoogle Scholar
  42. Grönwall, O., and Pehrson, Å., (1984). Nutrient content of fungi as a primary food of the red squirrel Sciurus vulgaris L. Oecologia 64: 230–231.CrossRefGoogle Scholar
  43. Hall, M. B., Hoover, W. H., Jennings, J. P., and Miller Webster, T. K. (1999). A method for partitioning neutral detergent-soluble carbohydrates. J. Sci. Food Agric. 79: 2079–2086.CrossRefGoogle Scholar
  44. Hanson, A. M. (2000). Habitat Use in Relation to Diet, with Particular Emphasis on Mycophagy, by Callimico goeldii in Pando, Bolivia. Masters Thesis, State University of New York at Stony Brook, Stony Brook, NY.Google Scholar
  45. Hanson, A. H., Hodge, K. T., and Porter, L. M. (2003). Mycophagy among primates. Mycologist 17: 6–10.CrossRefGoogle Scholar
  46. Hanya, G. (2004). Diet of a Japanese macaque troop in the coniferous forest of Yakushima. Int. J. Primatol. 25: 55–71.CrossRefGoogle Scholar
  47. Hershkovitz, P. (1977). Living New World Primates (Platyrrhini), Vol. I, University of Chicago Press, Chicago.Google Scholar
  48. Heymann, E., and Buchanan-Smith, H. (2000). The behavioural ecology of mixed-species troops of callitrichine primates. Biol. Rev. 75: 169–190.PubMedCrossRefGoogle Scholar
  49. Heymann, E. W., and Hartmann, G. (1991). Geophagy in moustached tamarins, Saguinus mystax (Platyrrhini: Callitrichidae), at the Rio Blanco, Peruvian Amazonia. Primates 32: 533–537.CrossRefGoogle Scholar
  50. Heymann, E. W., and Smith, A. C. (1999). When to feed on gums: Temporal patterns of gummivory in wild tamarins, Saguinus mystax and Saguinus fuscicollis. Zoo Biol. 18: 459–471.CrossRefGoogle Scholar
  51. Hill, W. C. O. (1959). The anatomy of Callimico goeldii (Thomas). In Transactions of the American Philosophical Society 49(5), The American Philosophical Society, Philadelphia.Google Scholar
  52. Hugot, J. P. (1998). Phylogeny of neotropical monkeys: The interplay of morphological, molecular, and parasitological data. Mol. Phylogenet. Evol. 9: 408–413.PubMedCrossRefGoogle Scholar
  53. Jeuniaux, C. (1961). Chitinase: An addition to the list of hydrolases in the digestive tract of vertebrates. Nature 192: 15–136.CrossRefGoogle Scholar
  54. Jeuniaux, C. (1963). Chitine et Chitinolyse. Un Chapitre de la Biologie Moléculairs, Masson, Paris, France.Google Scholar
  55. Kay, R. F. (1975). The functional adaptations of primate molar teeth. Am. J. Phys. Anthropol. 43: 195–215.PubMedCrossRefGoogle Scholar
  56. Kay, R. F., and Sheine, W. S. (1979). On the relationship between chitin particle size and digestibility in the primate Galago senegalensis. Am. J. Phys. Anthropol. 50: 301–308.CrossRefGoogle Scholar
  57. Kirkpatrick, R. C. (1996). Ecology and Behavior of the Yunan Snub-nosed Langur (Rhinopithecus bieti, Colobinae). PhD Thesis, University of California, Davis, CA.Google Scholar
  58. Kirkpatrick, R. C., Zou, R. J., Dierenfeld, E. S., and Zhou, H. W. (2001). Digestion of selected foods by Yunnan snub-nosed monkey Rhinopithecus bieti (Colobinae). Am. J. Phys. Anthropol. 114: 156–162.PubMedCrossRefGoogle Scholar
  59. Krombach, F., Flurer, C., and Zucker, H. (1984). Effects of fibre on digestibility and passage time in Callitrichidae. Lab. Anim. 18: 275–279.PubMedCrossRefGoogle Scholar
  60. Lambert, J. A. (1998). Primate digestion: Interactions among anatomy, physiology, and feeding ecology. Evol. Anthropol. 7: 8–20.CrossRefGoogle Scholar
  61. Martin, M. M. (1979). Biochemical implications of insect mycophagy. Biol. Rev. 54: 1–21.CrossRefGoogle Scholar
  62. McIlwee, A. P., and Johnson, C. N. (1998). The contribution of fungus to the diets of three mycophagous marsupials in Ecualyptus forests, revealed by stable isotope anaylysis. Funct. Ecol. 12: 223–231.CrossRefGoogle Scholar
  63. Mestre Corrêa, K. (1995). Ecologia e comportamiento alimentar de um grupo de Aguis-da-Serra-Escuros (Callitrthrix aurita E. Geoffroy 1812) no Parque Estadual da Serra do Mar, Núcleo Cunha, São Paulo, Brasil. Master's thesis, Instituto de Ciéncias Biológica, Departamento de Zoologia, Universidad Federal de Minas Gerais, Minas Gerais, Brasil.Google Scholar
  64. Milton, K. (1979). Factors influencing leaf choice by howler monkeys: A test of some hypotheses of food selection by generalist herbivores. Am. Nat. 114: 362–378.CrossRefGoogle Scholar
  65. Milton, K. (1980). The Foraging Strategies of Howler Monkeys: A Study in Primate Economics, Columbia University Press, New York.Google Scholar
  66. Milton, K. (1999). Nutritional characteristics of wild primate foods: Do the diets of our closest living relatives have lessons for us? Nutrition 15: 488–498.PubMedCrossRefGoogle Scholar
  67. Nash, L. T. (1986). Dietary, behavioral, and morphological aspects of gummivory in primates. Ybk. Phys. Anthropol. 29: 113–137.CrossRefGoogle Scholar
  68. National Research Council (2003a). Carbohydrates and fiber. In Nutrient Requirements of Non-human Primates, 2nd ed., National Academies Press, Washington, DC, pp. 58–74.Google Scholar
  69. National Research Council (2003b). Minerals. In Nutrient Requirements of Non-human Primates, 2nd ed. National Academies Press, Washington, DC, pp. 94–112.Google Scholar
  70. National Research Council (2003c). Nutrient requirements. In Nutrient Requirements of Non-human Primates, 2nd ed., National Academies Press, Washington, DC, pp. 191–194.Google Scholar
  71. Peres, C. A. (1996). Food patch structure and plant resource partitioning in interspecific associations of Amazonian tamarins. Int. J. Primatol. 17: 95–724.CrossRefGoogle Scholar
  72. Pianka, E. (1981). Competition and niche theory. In May, R. (ed.), Theoretical Ecology: Principles and Applications, Blackwell Scientific Publications, Oxford, UK, pp. 167–196.Google Scholar
  73. Pook, A., and Pook, G. (1982). Polyspecific associations between Saguinus fuscicollis, Saguinus labiatus, Callimico goeldii and other primates in north-western Bolivia. Folia Primatol. 38: 196–216.PubMedGoogle Scholar
  74. Popovich, D. G., Jenkins, D. J. A., Kendall, C. W. C., Dierenfeld, E. S., Carroll, R. W., Tariq, N., and Vidgen, E. (1997). The western lowland gorilla diet has implications for the health of humans and other hominids. J. Nutr. 127: 2000–2005.PubMedGoogle Scholar
  75. Porter, L. M. (2000). The Ecology and Behavior of the Goeldi's Monkey (Callimico goeldii) in Northern Bolivia. PhD, State University of New York at Stony Brook, Stony Brook, NY.Google Scholar
  76. Porter, L. M. (2001a). Dietary differences among sympatric callitrichinae in northern Bolivia: Callimico goeldii, Saguinus fuscicollis and S. labiatus. Int. J. Primatol. 22: 961–992.CrossRefGoogle Scholar
  77. Porter, L. M. (2001b). Benefits of polyspecific associations for the Goeldi's monkey (Callimico goeldii). Am. J. Primatol. 54: 143–158.PubMedCrossRefGoogle Scholar
  78. Porter, L. M. (2004). Differences in forest utilization and activity patterns among three sympatric callitrichines: Callimico goeldii, Saguinus fuscicollis and S. labiatus. Am. J. Phys. Anthropol. 124: 139–153.PubMedCrossRefGoogle Scholar
  79. Porter, L. M., Hanson, A. M., and Nacimento Becerra, E. (2001). Group demographics and dispersal in a wild group of Goeldi's monkeys (Callimico goeldii). Folia Primatol. 72: 108–110.PubMedCrossRefGoogle Scholar
  80. Power, M. L. (1996). The other side of callitrichine gummivory. In Norconk, M. A., Rosenberger, A. L., and Garber, P. A. (eds), Adaptive Radiations of Neotropical Primates, Plenum Press, New York, pp. 97–110.Google Scholar
  81. Power, M. L., and Oftedal, O. T. (1996). Differences among captive callitrichids in the digestive response to dietary gum. Am. J. Primatol. 40: 131–144.CrossRefGoogle Scholar
  82. Puertas, P., Encarnación, F., and Aquino, R. (1995). Analisis población del Pichico Pecho Anaranjado, Saguinus labiatus, en el sure oriente Peruano. Neotropical Primates 3: 4–7.Google Scholar
  83. Quris, R. (1975). The ecology and social organization of Cercocebus galeritus agilis From Northeast Gabon. Terre Vie 29(3): 337–398.Google Scholar
  84. Richard, A. F., Goldstein, S. J., and Dewar, R. E. (1989). Weed macaques: The evolutionary implications of macaque feeding ecology. Int. J. Primatol. 10: 569–591.CrossRefGoogle Scholar
  85. Rikimaru, T., Fujita, Y., Okuda, T., Kajiwara, N., Date, C., Heywood, P. F., Alpers, M. P., and Koishi, H. (1985). Utilization of urea nitrogen in Papua New Guinea highlanders. J. Nutr. Sci. Vitaminol. (Tokyo) 31: 393–402.Google Scholar
  86. Robbins, C. T. (1993). Wildlife Feeding and Ecology, Academic Press, New York.Google Scholar
  87. Rylands, A. (1993). The ecology of the lion tamarins, Leontopithecus: Some intrageneric differences and comparisons with other callitrichids. In Rylands, A. (ed.), Marmosets and Tamarins: Systematics, Behavior and Ecology, Oxford University Press, Oxford, UK, pp. 296–313.Google Scholar
  88. Schairer, M. L., Dierenfeld, E. S., and Fitzpatrick, M. P. (1998). Bull. Assoc. Rept. Amph. Vet. 8: 17–20.Google Scholar
  89. Sirois, P. K., Reuter, M. J., Laughlin, C. M., and Lockwood, P. J. (1994). A method for determining macro and micro elements in forages and feeds by inductively coupled plasma emission spectroscopy. The Spectroscopist 3: 6–9.Google Scholar
  90. Smith, A. C. (2000). Composition and proposed nutritional importance of exudates eaten by saddleback (Saguinus fuscicollis) and mustached (Saguinus mystax) tamarins. Int. J. Primatol. 21: 69–83.CrossRefGoogle Scholar
  91. Stebbins, R., and Cohen, N. (1995). A Natural History of Amphibians, Princeton University Press, Princeton, NJ.Google Scholar
  92. Stryer, L. (1988). Biochemistry, 3rd ed. W. H. Freeman, NY, pp. 577–580.Google Scholar
  93. Tan, C. (1999). Group composition, home range size, and diet of three sympatric bamboo lemur species (Genus Hapalemur) in Ranomafana National Park, Madagascar. Int. J. Primatol. 20: 547–566.CrossRefGoogle Scholar
  94. Terborgh, J. (1983). Five New World Primates, Princeton University Press, Princeton, NJ.Google Scholar
  95. Theander, O., and Westerlund, E. A. (1986). Studies on dietary fiber. 3. Improved procedures for analysis of dietary fiber. J. Agric. Food Chem. 34: 330–336.CrossRefGoogle Scholar
  96. van Soest, P. J. (1994). Nutritional Ecology of the Ruminant, 2nd ed. Cornell University Press, Ithaca, NY.Google Scholar
  97. Yeager, C. P., Silver, S. C., and Dierenfeld, E. S. (1997). Mineral and phytochemical influences on foliage selection by the proboscis monkey (Nasalis larvatus). Am. J. Primatol. 41: 117–128.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Amy M. Hanson
    • 1
    Email author
  • Mary Beth Hall
    • 2
  • Leila M. Porter
    • 3
  • Barbara Lintzenich
    • 4
  1. 1.Department of MammalogyWildlife Conservation SocietyBronxUSA
  2. 2.USDA-ARSU.S. Dairy Forage Research CenterMadisonUSA
  3. 3.Department of AnthropologyNorthern Illinois UniversityDeKalbUSA
  4. 4.Daniel F. and Ada L. Rice Conservation Biology and Research CenterChicago Zoological Society, Nutrition Department, Brookfield ZooBrookfieldUSA

Personalised recommendations