Diet and Mandibular Morphology in African Apes


Investigations seeking to understand the relationship between mandibular form, function, and dietary behavior have focused on the mandibular corpus and symphysis. African apes vary along a gradient of folivory/frugivory, yet few studies have evaluated the morphology of the mandibular corpus and symphysis in these taxa, and the investigations have yielded mixed results. Specifically, studies using external metrics have identified differences in mandibular proportions that analysis of cortical bone distribution has not substantiated. I contribute to the ongoing debate on the relationship between jaw form and dietary behavior by comparing mandibular corporal and symphyseal shapes in African apes. Importantly, and in contrast to previous studies of African ape internal geometry, I include the Virunga mountain gorillas (Gorilla beringei beringei), the ape most specialized toward a folivorous diet. I test the hypotheses that 1) Gorilla beringei beringei always has significantly more robust mandibular corpora and symphyses, relative to mandibular length, than all other African apes and 2) all gorillas have significantly more robust mandibular corpora and symphyses, relative to mandibular length, than Pan. Results demonstrate that the folivorous mountain gorillas consistently exhibit a relatively wider mandibular symphysis and corpus than all other African apes. Furthermore, all gorillas consistently exhibit relatively more robust mandibular corporal and symphyseal dimensions than Pan. The results indicate that among African apes, mountain gorillas are better able to counter lateral transverse bending (wishboning) loads at the symphysis and torsional loads at the corpus. All gorillas are likewise better able to resist wishboning and vertical bending at the symphysis, and sagittal bending and torsion at the corpus, than Pan, findings that are consistent with masticating relatively tougher foods, repetitive loading of the jaws, or both. I offer possible explanations for the lack of concordance in results between studies that have analyzed the biomechanical properties of African ape mandibles and others that have relied on external metrics. More comprehensive study of the internal geometry of the mandible is needed to resolve whether African apes differ morphologically in ways predicted by dietary variation.


diet African apes chimpanzees gorillas mandible symphysis corpus 


  1. Agrawal, K. R., Lucas, P. W., Bruce, I. C., and Prinz, J. F. (1998). Food properties that influence neuromuscular activity during human mastication. J. Dent. Res. 77: 1931–1938.PubMedGoogle Scholar
  2. Antón, S. (1996). Cranial adaptation to a high attrition diet in Japanese macaques. Int. J. Primatol. 17: 401–427.CrossRefGoogle Scholar
  3. Bauchop, T. (1978). Digestion of leaves in vertebrate arboreal folivores. In Montgomery, G. G. (ed.), The Ecology of Arboreal Folivores, Smithsonian Institution Press, Washington, DC, pp. 193–204.Google Scholar
  4. Beecher, R. M. (1977). Function and fusion at the mandibular symphysis. Am. J. Phys. Anthropol. 47: 325–333.PubMedCrossRefGoogle Scholar
  5. Bouvier, M. (1986a). A biomechanical analysis of mandibular scaling in Old World monkeys. Am. J. Phys. Anthropol. 69: 473–482.CrossRefGoogle Scholar
  6. Bouvier, M. (1986b). Biomechanical scaling of mandibular dimensions in New World monkeys. Int. J. Primatol. 7: 551–567.CrossRefGoogle Scholar
  7. Bouvier, M., and Hylander, W. L. (1981). Effect of bone strain on cortical bone structure in macaques (Macaca mulatta). J. Morphol. 167: 1–12.PubMedCrossRefGoogle Scholar
  8. Chamberlain, A. T., and Wood, B. A. (1985). A reappraisal of variation in hominid mandibular corpus dimensions. Am. J. Phys. Anthropol. 66: 399–405.CrossRefGoogle Scholar
  9. Chapman, C. A., White, F. J., and Wrangham, R. W. (1994). Party size in chimpanzees and bonobos: A reevaluation of theory based on two similarly forested sites. In Wrangham, R. W., McGrew, W. C., de Waal, F. B. M., and Heltne, P. G. (eds.), Chimpanzee Cultures, Harvard University Press, Cambridge, MA, pp. 41–58.Google Scholar
  10. Cole, T. M. (1992). Postnatal heterochrony of the masticatory apparatus in Cebus apella and Cebus albifrons. J. Hum Evol. 23: 253–282.CrossRefGoogle Scholar
  11. Coolidge, H. J. (1929). A revision of the genus Gorilla. Mem. Mus. Comp. Zool. Harvard 50: 291–381.Google Scholar
  12. Daegling, D. J. (1989). Biomechanics of cross-sectional size and shape in the hominoid mandibular corpus. Am. J. Phys. Anthropol. 80: 91–106.PubMedCrossRefGoogle Scholar
  13. Daegling, D. J. (1990). Geometry and biomechanics of hominoid mandibles. PhD. dissertation, State University of New York at Stony Brook.Google Scholar
  14. Daegling, D. J. (1992). Mandibular morphology and diet in the genus Cebus. Int. J. Primatol. 13: 545–570.CrossRefGoogle Scholar
  15. Daegling, D. J. (1996). Growth in the mandibles of African apes. J. Hum Evol. 30: 315–341.CrossRefGoogle Scholar
  16. Daegling, D. J. (2001). Biomechanical scaling of the hominoid mandibular symphysis. J. Morphol. 250: 12–23.PubMedCrossRefGoogle Scholar
  17. Daegling, D. J. (2002). Bone geometry in cercopithecoid mandibles. Arch. Oral Biol. 47: 315–325.PubMedCrossRefGoogle Scholar
  18. Daegling, D. J., and Hylander, W. L. (1998). Biomechanics of torsion in the human mandible. Am. J. Phys. Anthropol. 105: 73–87.PubMedCrossRefGoogle Scholar
  19. Daegling, D. J., and McGraw, W. S. (2001). Feeding, diet, and jaw form in West African Colobus and Procolobus. Int. J. Primatol. 22: 1033–1055.CrossRefGoogle Scholar
  20. Dean, M. C., and Beynon, A. D. (1991). Tooth crown heights, tooth wear, sexual dimorphism and jaw growth in hominoids. Z. Morphol. Anthropol. 78: 425–440.PubMedGoogle Scholar
  21. Dechow, P., and Hylander, W. L. (2000). Elastic properties and masticatory bone stress in the macaque mandible. Am. J. Phys. Anthropol. 112: 553–574.PubMedCrossRefGoogle Scholar
  22. Demes, B., Preuschoft, H., and Wolff, J. E. A. (1984). Stress-strength relationships in the mandibles of hominoids. In Chivers, D. J., Wood, B. A., and Bilsborough, A. (eds.), Food Acquisition and Processing in Primates, Plenum Press, New York, pp. 369–390.Google Scholar
  23. DuBrul, E. L. (1977). Early hominid feeding mechanisms. Am. J. Phys. Anthropol. 47: 305–320.CrossRefGoogle Scholar
  24. Dumont, E. (1997). Cranial shape in fruit, nectar, and exudate feeders: implications for interpreting the fossil record. Am. J. Phys. Anthropol. 102: 187–202.PubMedCrossRefGoogle Scholar
  25. Elgart-Berry, A. (2004). Fracture toughness of mountain gorilla (Gorilla gorilla beringei) food plants. Am. J. Primatol. 62: 275–285.PubMedCrossRefGoogle Scholar
  26. Fossey, D., and Harcourt, A. H. (1977). Feeding ecology of free-ranging mountain gorillas (Gorilla gorilla beringei). In Clutton-Brock, T. H. (ed.), Primate Ecology, Academic Press, New York, pp. 415–447.Google Scholar
  27. Garland, T., and Adolph, S. C. (1994). Why not to do two-species comparative studies: limitations on inferring adaptation. Physiol. Zool. 67: 797–828.Google Scholar
  28. Ghiglieri, M. P. (1984). The Chimpanzees of the Kibale Forest. Columbia University Press, New York.Google Scholar
  29. Goldsmith, M. L. (2003). Comparative behavioral ecology of a lowland and highland population: where do Bwindi gorillas fit? In Taylor, A. B., and Goldsmith, M. L. (eds.), Gorilla Biology: A Multidisciplinary Perspective, Cambridge University Press, Cambridge, UK, pp. 358–384.Google Scholar
  30. Goodall, J. (1965). Chimpanzees of the Gombe Stream Reserve. In DeVore, I. (ed.), Primate Behavior, Holt, Rinehart and Winston, New York, pp. 425–447.Google Scholar
  31. Groves, C. P. (1967). Ecology and taxonomy of the gorilla. Nature 213: 890–893.PubMedCrossRefGoogle Scholar
  32. Groves, C. P. (1970). Gigantopithecus and the mountain gorilla. Nature 226: 973–974.PubMedCrossRefGoogle Scholar
  33. Groves, C. P. (2001). Primate Taxonomy, Smithsonian Institution Press, Washington, DC.Google Scholar
  34. Harvey, P. H., and Pagel, M. D. (1991). The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford.Google Scholar
  35. Hladik, A., and Hladik, C. M. (1969). Rapports trophiques entre vegetation et primates dans la forêt de Barro Colorado (Panama). Terre Vie 1: 25–117.Google Scholar
  36. Hylander, W. L. (1979a). The functional significance of primate mandibular form. J. Morphol. 160: 223–240.PubMedCrossRefGoogle Scholar
  37. Hylander, W. L. (1979b). Mandibular function in Galago crassicaudatus and Macaca fascicularis: an in vivo approach to stress analysis in the mandible. J. Morphol. 159: 253–296.PubMedCrossRefGoogle Scholar
  38. Hylander, W. L. (1984). Stress and strain in the mandibular symphysis of primates: a test of competing hypotheses. Am. J. Phys. Anthropol. 64: 1–46.PubMedCrossRefGoogle Scholar
  39. Hylander, W. L. (1985). Mandibular function and biomechanical stress and scaling. Am. Zool. 25: 315–330.Google Scholar
  40. Hylander, W. L. (1988). Implications of in vivo experiments for interpreting the functional significance of “robust” australopithecine jaws. In Grine, F. E. (ed.), Evolutionary History of the Robust Australopithecines, Aldine de Gruyter, New York, pp. 44–83.Google Scholar
  41. Hylander, W. L., and Johnson, K. R. (1994). Jaw muscle function and wishboning of the mandible during mastication in macaques and baboons. Am. J. Phys. Anthropol. 94: 523–547.PubMedCrossRefGoogle Scholar
  42. Hylander, W. L., Johnson, K. R., and Crompton, A. W. (1987). Loading patterns and jaw movements during mastication in Macaca fascicularis: a bone-strain, electromyographic, and cineradiographic analysis. Am. J. Phys. Anthropol. 72: 287–314.PubMedCrossRefGoogle Scholar
  43. Hylander, W. L., Johnson, K. R., and Crompton, A. W. (1992). Muscle force recruitment and biomechanical modeling: an analysis of masseter muscle function during mastication in Macaca fascicularis. Am. J. Phys. Anthropol. 88: 365–387.PubMedCrossRefGoogle Scholar
  44. Hylander, W. L., Ravosa, M. J., Ross, C. F., and Johnson, K. R. (1998). Mandibular corpus strain in primates: further evidence for a functional link between symphyseal fusion and jaw-adductor muscle force. Am. J. Phys. Anthropol. 107: 257–271.PubMedCrossRefGoogle Scholar
  45. Hylander, W. L., Ravosa, M. J., Ross, C. F., Wall, C. E., and Johnson, K. R. (2000). Symphyseal fusion and jaw-adductor muscle force: an EMG study. Am. J. Phys. Anthropol. 112: 469–492.PubMedCrossRefGoogle Scholar
  46. Jablonski, N. G., Pan, R. L., and Chaplin, G. (1998). Mandibular morphology of the doucs and snub-nosed monkeys in relation to diet. In Jablonski, N. G. (ed.), The Natural History of the Doucs and snub-Nosed Monkeys, World Scientific, Singapore, pp. 105–128.Google Scholar
  47. Johanson, D. C. (1974a). Some metric aspects of the permanent and deciduous dentition of the pygmy chimpanzee (Pan paniscus). Am. J. Phys. Anthropol. 41: 39–48.CrossRefGoogle Scholar
  48. Johanson, D. C. (1974b). An odontological study of the chimpanzee with some implications for hominoid evolution. PhD dissertation, University of Chicago.Google Scholar
  49. Jungers, W. L., Falsetti, A. B., and Wall, C. E. (1995). Shape, relative size, and size-adjustments in morphometrics. Yrbk. Phys. Anthropol. 38: 137–162.CrossRefGoogle Scholar
  50. Kay, R. F. (1984). On the use of anatomical features to infer foraging behavior in extinct primates. In Rodman, P. S., and Cant, J. G. H. (eds.), Adaptations for Foraging in Nonhuman Primates: Contributions to an Organismal Biology of Prosimians, Monkeys, and Apes, Columbia University Press, New York, pp. 20–53.Google Scholar
  51. Kay, R. F., and Covert, B. (1984). Anatomy and behavior of extinct primates. In Chivers, D. J., Wood, B. A., Bilsborough, A. (eds.), Food Acquisition and Processing in Primates, Plenum Press, New York, pp. 467–508.Google Scholar
  52. Kuroda, S., Nishihara, T., Suzuki, S., and Oko, R. A. (1996). Sympatric chimpanzees and gorillas in the Ndoki Forest, Congo. In McGrew, W. C., Marchant, L. F., and Nishida, T. (eds.), Great Ape Societies, Cambridge University Press, Cambridge, UK, pp. 71–81.Google Scholar
  53. Lucas, P. W., Prinz, J. F., Agrawal, K. R. and Bruce, I. M. (2002). Food physics and oral physiology. Food Qual. Pref. 13: 203–213.CrossRefGoogle Scholar
  54. Lucas, P. W., Turner, I. M., Dominy, N. J. and Yamashita, N. (2000). Mechanical defences to herbivory. Ann. Bot. 86: 913–920.CrossRefGoogle Scholar
  55. Maddison, W. P. (2000). Testing character correlation using pairwise comparisons on a phylogeny. J. Theor. Biol. 202: 195–204.PubMedCrossRefGoogle Scholar
  56. Malenky, R. K., and Stiles, E. W. (1991). Distribution of terrestrial herbaceous vegetation and its consumption by Pan paniscus in the Lomako Forest, Zaire. Am. J. Primatol. 23: 153–169.CrossRefGoogle Scholar
  57. Malenky, R. K., and Wrangham, R. W. (1994). A quantitative comparison of terrestrial herbaceous food consumption by Pan paniscus in the Lomako Forest, Zaire, and Pan troglodytes in the Kibale Forest, Uganda. Am. J. Primatol. 32: 1–12.CrossRefGoogle Scholar
  58. McGrew, W. C., Baldwin, P. J., and Tutin, C. E. G. (1988). Diet of wild chimpanzees (Pan troglodytes verus) at Mt. Assirik, Senegal: I. Composition. Am. J. Primatol. 16: 213–226.CrossRefGoogle Scholar
  59. Milton, K. (1984). The role of food-processing factors in primate food choice. In Rodman, P. S., and Cant, J. G. H. (eds.), Adaptations for Foraging in Nonhuman Primates: Contributions to an Organismal Biology of Prosimians, Monkeys, and Apes, Columbia University Press, New York, pp. 249–279.Google Scholar
  60. Nishida, T., and Uehara, S. (1983). Natural diet of chimpanzees (Pan troglodytes schweinfurthii): Long-term record from the Mahale Mountains, Tanzania. Afr. Study Monogr. 3: 109–130.Google Scholar
  61. Nishihara, T. (1992). A preliminary report on the feeding habits of western lowland gorillas (Gorilla gorilla gorilla) in the Ndoki Forest of northern Congo. In Itoigawa, N., Sugiyama, Y., Sackett, G. P., and Thompson, R. K. R. (eds.), Topics in Primatology, Vol. 2, Behavior, Ecology and Conservation, University of Tokyo Press, Tokyo, pp. 225–240.Google Scholar
  62. Ravosa, M. J. (1990). Functional assessment of subfamily variation in maxillomandibular morphology among Old World monkeys. Am. J. Phys. Anthropol. 82: 199–212.PubMedCrossRefGoogle Scholar
  63. Ravosa, M. J. (1991). Structural allometry of the prosimian mandibular corpus and symphysis. J. Hum Evol. 20: 3–20.CrossRefGoogle Scholar
  64. Ravosa, M. J. (1996). Jaw morphology and function in living and fossil Old World monkeys. Int. J. Primatol. 17: 909–932.CrossRefGoogle Scholar
  65. Ravosa, M. J. (2000). Size and scaling in the mandible of living and extinct apes. Folia Primatol. 71: 305–322.PubMedCrossRefGoogle Scholar
  66. Remis, M. J. (1994). Feeding ecology and positional behavior of western lowland gorillas (Gorilla gorilla gorilla) in the Central African Republic. Ph.D. dissertation, Yale University.Google Scholar
  67. Remis, M. J. (1997). Western lowland gorillas (Gorilla gorilla gorilla) as seasonal frugivores: use of variable resources. Am. J. Primatol. 43: 87–109.PubMedCrossRefGoogle Scholar
  68. Rice, W. R. (1989). Analyzing tables of statistical tests. Evolution 43: 25–33.CrossRefGoogle Scholar
  69. Sabater Pi, J. (1979). Feeding behaviour and diet of chimpanzees (Pan troglodytes troglodytes) in the Okorobikó Mountains of Rio Muni (West Africa). Zeit. Tierpsychol. 50: 265–281.Google Scholar
  70. Schaller, G. B. (1963). The Mountain Gorilla, University of Chicago Press, Chicago.Google Scholar
  71. Shea, B. T. (1983a). Size and diet in the evolution of African ape craniodental form. Folia Primatol. 40: 32–68.PubMedGoogle Scholar
  72. Shea, B. T. (1983b). Allometry and heterochrony in the African apes. Am. J. Phys. Anthropol. 62: 275–289.PubMedCrossRefGoogle Scholar
  73. Shea, B. T. (1984). An allometric perspective on the morphological and evolutionary relationships between pygmy (Pan paniscus) and common (Pan troglodytes) chimpanzees. In Susman, R. L. (ed.), The Pygmy Chimpanzee: Evolutionary Biology and Behavior, Plenum Press, New York, pp. 89–130.Google Scholar
  74. Shea, B. T. (1985). On aspects of skull form in African apes and orangutans, with implications for hominoid evolution. Am. J. Phys. Anthropol. 68: 329–342.PubMedCrossRefGoogle Scholar
  75. Shea, B. T. (1995). Ontogenetic scaling and size correction in the comparative study of primate adaptations. Anthropologie XXXIII: 1–16.Google Scholar
  76. Shea, B. T., Leigh, S. R., and Groves, C. P. (1993). Multivariate craniometric variation in chimpanzees: implications for species identification. In Kimbel, W. H., and Martin, L. B. (eds.), Species, Species Concepts, and Primate Evolution, Plenum Press, New York, pp. 206–265.Google Scholar
  77. Smith, R. J. (1983). The mandibular corpus of female primates: taxonomic, dietary, and allometric correlates of interspecific variations in size and shape. Am. J. Phys. Anthropol. 61: 315–330.PubMedCrossRefGoogle Scholar
  78. Sokal, R. R., and Rohlf, F. J. (1995). Biometry, 3rd ed. W.H. Freeman, New York.Google Scholar
  79. Spencer, M. A., and Demes, B. (1993). Biomechanical analysis of masticatory system configuration in Neandertals and Inuits. Am. J. Phys. Anthropol. 91: 1–20.PubMedCrossRefGoogle Scholar
  80. Sugiyama, Y., and Koman, J. (1987). A preliminary list of chimpanzees’ alimentation at Bossou, Guinea. Primates 28: 133–147.CrossRefGoogle Scholar
  81. Taylor, A. B. (2002). Masticatory form and function in the African apes. Am. J. Phys. Anthropol. 117: 133–156.PubMedCrossRefGoogle Scholar
  82. Taylor, A. B. (2003). Ontogeny and function of the masticatory complex in Gorilla: functional, evolutionary, and taxonomic implications. In Taylor, A. B., and Goldsmith, M. L. (eds.), Gorilla Biology: A Multidisciplinary Perspective, Cambridge University Press, Cambridge, UK, pp. 132–193.Google Scholar
  83. Taylor, A. B. (2005). A comparative analysis of temporomandibular joint morphology in the African apes. J. Hum. Evol. 48: 555–574.Google Scholar
  84. Taylor, A. B. (2006). Feeding behavior, diet, and the functional consequences of jaw form in orangutans, with implications for the evolution of Pongo. J. Hum Evol. 50(4): 377–393.Google Scholar
  85. Thexton, A., and Hiiemae, K. M. (1997). The effect of food consistency upon jaw movement in the macaque: a cineradiographic study. J. Dent. Res. 76: 552–560.PubMedCrossRefGoogle Scholar
  86. Thexton, A. J., Hiiemae, K. M., and Crompton, A. W. (1980). Food consistency and bite size as regulators of jaw movement during feeding in the cat. J. Neurophysiol. 44: 456–474.PubMedGoogle Scholar
  87. Tutin, C. E. G., and Fernandez, M. (1993). Composition of the diet of chimpanzees and comparisons with that of sympatric lowland gorillas in the Lopé Reserve, Gabon. Am. J. Primatol. 30: 195–211.CrossRefGoogle Scholar
  88. Tutin, C. E. G., Fernandez, M., Rogers, M. E., Williamson, E. A., and McGrew, W. C. (1991). Foraging profiles of sympatric lowland gorillas and chimpanzees in the Lopé Reserve, Gabon. Phil. Trans. Roy. Soc. Lond, Ser. B 334: 179–187.CrossRefGoogle Scholar
  89. Tutin, C. E. G., Ham, R. M., White, L. J. T., and Harrison, M. J. S. (1997). The primate community of the Lopé Reserve, Gabon: diets, responses to fruit scarcity, and effects on biomass. Am. J. Primatol. 42: 1–24.PubMedCrossRefGoogle Scholar
  90. Tuttle, R. H. (2003). An introductory perspective: gorillas—how important, how many, how long? In Taylor, A. B., and Goldsmith, M. L. (eds.), Gorilla Biology: A Multidisciplinary Perspective, Cambridge University Press, Cambridge, UK, pp. 11–14.Google Scholar
  91. Uchida, A. (1996). Craniodental variation among the great apes. Peabody Museum Bulletin 4. Harvard University Press, Cambridge, MA.Google Scholar
  92. Uchida, A. (1998). Variation in tooth morphology of Gorilla gorilla. J. Hum. Evol. 34: 55–70.PubMedCrossRefGoogle Scholar
  93. Vinyard, C. J., and Ravosa, M. J. (1998). Ontogeny, function and scaling of the mandibular symphysis in Papionin primates. J. Morphol. 235: 157–175.CrossRefGoogle Scholar
  94. Vinyard, C. J., Wall, C. E., Williams, S. H., and Hylander, W. L. (2003). Comparative functional analysis of skull morphology of tree-gouging primates. Am. J. Phys. Anthropol. 120: 153–170.PubMedCrossRefGoogle Scholar
  95. Vogel, C. (1961). Zur systematishcen untergliederung der gattung Gorilla anhand van untersuchungen mandible. Zeit. Säuget. 26: 1–12.Google Scholar
  96. Watts, D. P. (1984). Composition and variability of mountain gorilla diets in the central Virungas. Am. J. Primatol. 7: 323–356.CrossRefGoogle Scholar
  97. Watts, D. P. (1996). Comparative socio-ecology of gorillas. In McGrew, W. C., Marchant, L. F., and Nishida, T. (eds.), Great Ape Societies, Cambridge University Press, Cambridge, UK, pp. 16–28.Google Scholar
  98. Williamson, E. A., Tutin, C. E. G., Rogers, M. E., and Fernandez, M. (1990). Composition of the diet of lowland gorillas at Lopé in Gabon. Am. J. Primatol. 21: 265–277.CrossRefGoogle Scholar
  99. Wolpoff, M. H. (1975). Some aspects of human mandibular evolution. In McNamara, J. A. Jr. (ed.), Determinants of Mandibular Form and Growth. Craniofacial Growth Series Monograph 4. Center for Human Growth and Development, Ann Arbor, pp. 1–64.Google Scholar
  100. Wrangham, R. W., and Smuts, B. B. (1980). Sex differences in the behavioral ecology of chimpanzees in the Gombe National Park, Tanzania. J. Reprod. Fertil. Suppl. 29: 13–31.Google Scholar
  101. Yamagiwa, J., Maruhashi, T., Yumoto, T., and Mwanza, N. (1996). Dietary and ranging overlap in sympatric gorillas and chimpanzees in Kahuzi-Biega National Park, Zaïre. In McGrew, W. C., Marchant, L. F., and Nishida, T. (eds.), Great Ape Societies, Cambridge University Press, Cambridge, UK, pp. 82–98.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Community and Family Medicine, Duke University School of Medicine; Department of Biological AnthropologyDuke UniversityDurhamUSA

Personalised recommendations