International Journal of Primatology

, Volume 26, Issue 5, pp 1017–1037 | Cite as

A Multi-Forest Comparison of Dietary Preferences and Seed Dispersal by Ateles spp

  • Sabrina E. Russo
  • Christina J. Campbell
  • J. Lawrence Dew
  • Pablo R. Stevenson
  • Scott A. Suarez


Investigations of coevolutionary relationships between plants and the animals that disperse their seeds suggest that disperser-plant interactions are likely shaped by diffuse, rather than species-to-species, coevolution. We studied the role of dietary plasticity in shaping the potential for diffuse coevolution by comparing dietary fruit preferences and seed dispersal by 3 species of spider monkeys (Ateles spp.) in 4 moist forests in Colombia, Ecuador, Panama, and Surinam. In all forests, spider monkeys were highly frugivorous and preyed upon seeds of few species. We estimated dietary use of fruiting taxa based on absolute consumption and preference, which accounts for resource availability. Of the 59 genera that comprised the 20 most frequently consumed genera summed in each forest, only 3—Brosimum (Moraceae), Cecropia (Cecropiaceae) and Virola (Myristicaceae)—ranked within the top 20 at every forest. Most genera were within the 20 most frequently consumed at only 1 or 2 forests. Based on preferences, only 4 genera ranked in the 20 most-preferred in all 4 forests: Brosimum, Cecropia, Ficus (Moracae), and Virola. Patterns in fruit consumption and preference at the familial level were similar in that only 2 families—Myristicaceae and Moraceae—were in the 10 most-consumed or most-preferred in all 4 forests. Interforest variation in plant specific composition and abundances and supra-annual fruiting phenologies, combined with dietary flexibility of Ateles spp., may partly explain these patterns. Our results suggest that variation in plant community structure strongly influences dietary preferences, and hence, seed dispersal by spider monkeys. Thus, diffuse coevolution in spider monkey-plant relationships may be limited to few taxa at the generic and familial levels.


Ateles plant-disperser interactions coevolution frugivory seed dispersal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahumada, J. A., Stevenson, P. R., and Quiñones, M. J. (1998). Ecological response of spider monkeys to temporal variation in fruit abundance: The importance of flooded forest as a keystone habitat. Prim. Conserv. 18: 10–14.Google Scholar
  2. Andresen, E. (1999). Seed dispersal by monkeys and the fate of dispersed seeds in a Peruvian rainforest. Biotropica 31: 145–158.Google Scholar
  3. Campbell, C. J. (2000). The Reproductive Biology of Black-handed Spider Monkeys (Ateles geoffroyi): Integrating behavior and endocrinology. Ph.D. thesis, University of California, Berkeley.Google Scholar
  4. Campbell, D. G. (1994). Scale and patterns of community structure in Amazonian forests. In Edwards, P. J., May, R. M., and Webb, N. R. (eds.), Large-scale ecology and Conservation Biology. Blackwell Scientific Publications, London, pp. 179–197.Google Scholar
  5. Carlo, T. A., Collazo, J. A., and Groom, M. J. (2003). Avian fruit preferences across a Puerto Rican forested landscape: Pattern consistency and implications for seed removal. Oecologia 134: 119–131.CrossRefPubMedGoogle Scholar
  6. Chapman, C. (1987). Flexibility in diets of three species of Costa Rican primates. Folia Primatol. 49: 90–105.Google Scholar
  7. Chapman, C. A., and Chapman, L. J. (1990). Dietary variability in primate populations. Primates 31: 121–128.Google Scholar
  8. Chapman, C. A., and Chapman, L. J. (1995). Survival without dispersers: Seedling recruitment under parents. Cons. Biol. 9: 675–678.CrossRefGoogle Scholar
  9. Chapman, C. A., and Chapman, L. J. (2002a). Foraging challenges of red colobus monkeys: Influence of nutrients and secondary compounds. Comp. Biochem. Phys. A 133: 861–875.Google Scholar
  10. Chapman, C. A., and Chapman, L. J. (2002b). Plant-animal coevolution: Is it thwarted by spatial and temporal variation in animal foraging? In Levey, D. J., Silva, W. R., and Galetti, M. (eds.), Seed Dispersal and Frugivory: Ecology, Evolution, and Conservation. CABI Publishing, New York, pp. 275–290.Google Scholar
  11. Chapman, C. A., Chapman, L. J., and Gillespie, T. R. (2002). Scale issues in the study of primate foraging: Red colobus of Kibale National Park. Am. J. Phys. Anthropol. 117: 349–363.CrossRefPubMedGoogle Scholar
  12. Chapman, C. A., and Onderdonk, D. A. (1998). Forests without primates: Primate/plant codependency. Am. J. Primatol. 45: 127–141.CrossRefPubMedGoogle Scholar
  13. Clutton-brock, T. H. (1977). Some aspects of intraspecific variation in feeding and ranging behavior in primates. In Clutton-Brock, T. H. (ed.), Primate Ecology: Studies of feeding and ranging behavior in lemurs, monkeys and apes. Academic Press, London, pp. 539–556.Google Scholar
  14. Colinvaux, P. A., De Oliveira, P. E., Moreno, J. E., Miller, M. C., and Bush, M. B. (1996). A long pollen record from lowland Amazonia: Forest and cooling in glacial times. Science 275: 85–88.CrossRefGoogle Scholar
  15. Condit, R., Hubbell, S. P., and Foster, R. B. (1996). Changes in tree species abundance in a neotropical forest: Impact of climate change. J. Trop. Ecol. 12: 231–256.Google Scholar
  16. Condit, R., Pitman, N., Leigh, E. G., Chave, J., Terborgh, J., Foster, R. B., Nunez, V. P., et al (2002). Beta-diversity in tropical forest trees. Science 295: 666–669.CrossRefPubMedGoogle Scholar
  17. Delcourt, P. A., and Delcourt, H. R. (1987). Long-term Forest Dynamics in the Temperate Zone. Springer-Verlag, New York.Google Scholar
  18. Dew, J. L. (2001). Synecology and seed dispersal in woolly monkeys (Lagothrix lagotricha poeppigii) and spider monkeys (Ateles belzebuth belzebuth) in Parque Nacional Yasuní, Ecuador. Ph.D. thesis, University of California, Davis.Google Scholar
  19. Di Fiore, A., and Rodman, P. S. (2001). Time allocation patterns of lowland woolly monkeys (Lagothrix lagotricha poeppigii) in a Neotropical terra firma forest. Int. J. Primatol. 22: 449–480.Google Scholar
  20. Fleming, T. H., and Williams, C. F. (1990). Phenology, seed dispersal, and recruitment in Cecropia peltata (Moraceae) in Costa Rican tropical dry forest. J. Trop. Ecol. 6: 163–178.Google Scholar
  21. Futuyma, D. J. (1998). Evolutionary Biology. Sinauer Associates, Inc., Sunderland.Google Scholar
  22. Gautier-Hion, A., Duplantier, J. M., Quris, R., Feer, F., Sourd, C., Decoux, J. P., Dubost, G., et al (1985). Fruit characters as a basis of fruit choice and seed dispersal in a tropical forest vertebrate community. Oecologia 65: 324–337.CrossRefGoogle Scholar
  23. Herrera, C. M. (1985). Determinants of plant-animal coevolution: The case of mutualistic dispersal of seeds by vertebrates. Oikos 44: 132–141.Google Scholar
  24. Herrera, C. M. (2002). Seed dispersal by vertebrates. In Herrera, C. M., and Pellmyr, O. (eds.), Plant-Animal Interactions: An Evolutionary Approach. Blackwell Science, Ltd., Oxford, UK, pp. 185–210.Google Scholar
  25. Hershkovitz, P. (1978). Living New World Monkeys, Platyrrhini: With an Introduction to Primates. University of Chicago Press, Chicago.Google Scholar
  26. Hladik, C. M. (1977). Chimpanzees of Gabon and chimpanzees of Gombe: Some comparative data on the diet. In Clutton-Brock, T. H. (ed.), Primate Ecology: Studies of feeding and ranging behavior in lemurs, monkeys and apes. Academic Press, London, pp. 481–501.Google Scholar
  27. Howe, H. F. (1981). Dispersal of a neotropical nutmeg (Virola sebifera) by birds. Auk 98: 88–98.Google Scholar
  28. Howe, H. F. (1984). Constraints on the evolution of mutualisms. Am. Nat. 123: 764–777.CrossRefGoogle Scholar
  29. Howe, H. F., and Smallwood, J. (1982). Ecology of seed dispersal. Ann. Rev. Ecol. Syst. 13: 201–228.CrossRefGoogle Scholar
  30. Howe, H. F., and Vande Kerckhove, G. A. (1981). Removal of wild nutmeg (Virola surinamensis) crops by birds. Ecology 62: 1093–1106.Google Scholar
  31. Janson, C. H. (1983). Adaptation of fruit morphology to dispersal agents in a Neotropical forest. Science 219: 187–189.Google Scholar
  32. Janzen, D. H. (1980). When is it coevolution? Evolution 34: 611–612.Google Scholar
  33. Kaplin, B. A., Munyaligoga, V., and Moermond, T. C. (1998). The influence of temporal changes in fruit availability on diet composition and seed handling in blue monkeys (Cercopithecus mitis doggetti). Biotropica 30: 56–71.Google Scholar
  34. Kinzey, W. G., and Norconk, M. A. (1990). Hardness as a basis of fruit choice in two sympatric primates. Am. J. Phys. Anthropol. 81: 5–15.CrossRefPubMedGoogle Scholar
  35. Klein, L. L., and Klein, D. J. (1977). Feeding behavior of the Colombian spider monkey, Ateles belzebuth. In Clutton-Brock, T. H. (ed.), Primate ecology: Studies of feeding and ranging behavior in lemurs, monkeys, and apes. Academic Press, New York, pp. 153–181.Google Scholar
  36. Krebs, C. J. (1999). Ecological methodology. Benjamin/Cummings, Menlo Park, CA.Google Scholar
  37. Leigh, E. G. (1999). Tropical Forest Ecology: A View from Barro Colorado Island. Oxford University Press, Oxford.Google Scholar
  38. McFarland, M. J. (1986). Ecological determinants of fission-fusion sociality in Ateles and Pan. In Else, J. G., and Lee, P. C. (eds.), Primate Ecology and Conservation. Cambridge University Press, Cambridge, pp. 181–190.Google Scholar
  39. McKey, D. (1975). The ecology of coevolved seed dispersal systems. In Gilbert, L. E., and Raven, P. H. (eds.), Coevolution of Animals and Plants. University of Texas Press, Austin, pp. 159–191.Google Scholar
  40. Milton, K. (1993). Diet and social organization of a free-ranging spider monkey population: The development of species-typical behavior in the absence of adults. In Pererira, M. E., and Fairbanks, L. A. (eds.), Juvenile Primates: Life History, Development, and Behavior. Oxford University Press, Oxford, pp. 136–144.Google Scholar
  41. Nunes, A. (1998). Diet and feeding ecology of Ateles belzebuth belzebuth at Maraca Ecological Station, Roraima, Brazil. Folia Primatol. 69: 61–76.CrossRefPubMedGoogle Scholar
  42. Pacheco, L. F., and Simonetti, J. A. (2000). Genetic structure of a mimosoid tree deprived of its seed disperser, the spider monkey. Cons. Biol. 14: 1766–1775.CrossRefGoogle Scholar
  43. Peres, C. A. (2000). Effect of subsistence hunting on vertebrate community structure in Amazonian forests. Cons. Biol. 14: 240–253.CrossRefGoogle Scholar
  44. Pitman, N. C. A., Terborgh, J. W., Silman, M. R., Nunez, V. P., Neill, D. A., Ceron, C. E., Palacios, W. A., et al (2001). Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology 82: 2101–2117.Google Scholar
  45. Redford, K. H. (1992). The empty forest. Bioscience 42: 412–422.Google Scholar
  46. Russo, S. E. (2003). Responses of dispersal agents to tree and fruit traits in Virola calophylla (Myristicaceae): Implications for selection. Oecologia 136: 80–87.CrossRefPubMedGoogle Scholar
  47. Snow, D. W. (1971). Evolutionary aspects of fruit-eating by birds. Ibis 113: 194–202.Google Scholar
  48. Sokal, R. R., and Rohlf, F. J. (1995). Biometry. W. H. Freeman, New York.Google Scholar
  49. Stevenson, P. R. (2002). Frugivory and Seed Dispersal by Wooly Monkeys at Tinigua National Park, Colombia. Ph.D. thesis, State University of New York at Stony Brook, Stony Brook.Google Scholar
  50. Stevenson, P. R., and Quiñones, M. J. (2004). Sampling methods used to quantify activity patterns and diet: A comparative example using woolly monkeys (Lagothrix lagotricha). Field Studies of Fauna and Flora La Macarena Colombia. 14: 21–28.Google Scholar
  51. Stevenson, P. R., Quinones, M. J., and Ahumada, J. A. (2000). Influence of fruit availability on ecological overlap among four neotropical primates at Tinigua National Park, Colombia. Biotropica 32: 533–544.Google Scholar
  52. Suarez, S. A. (2003). Spatio-Temporal Foraging Skills of White-Bellied Spider Monkeys (Ateles belzebuth belzebuth) in the Yasuni National Park, Ecuador. Ph.D. thesis, State University of New York at Stony Brook, Stony Brook.Google Scholar
  53. Surridge, A. K., Osorio, D., and Mundy, N. I. (2003). Evolution and selection of trichromatic vision in primates. TREE 18: 198–205.Google Scholar
  54. Sussman, R. W. (1991). Primate origins and the evolution of angiosperms. Am. J. Primatol. 23: 209–223.CrossRefGoogle Scholar
  55. Symington, M. M. (1987). Demography, ranging patterns, and activity budgets of black spider monkeys (Ateles paniscus chamek) in the Manú National Park, Perú. Am. J. Primatol. 15: 45–67.CrossRefGoogle Scholar
  56. Tello, J. G. (2003). Frugivores at a fruiting Ficus in south-eastern Peru. J. Trop. Ecol. 19: 717–721.Google Scholar
  57. Terborgh, J. (1983). Five New World Primates. Princeton University Press, Princeton, New Jersey.Google Scholar
  58. Terborgh, J. (1986). Keystone plant resources in the tropical forest. In Soulé, M. E. (ed.), Conservation Biology: The Science of Scarcity and Diversity. Sinauer Associates, Sunderland, pp. 330–344.Google Scholar
  59. Thompson, J. N. (1994). The Coevolutionary Process. University of Chicago Press, Chicago.Google Scholar
  60. Thompson, J. N. (1999). Specific hypotheses on the geographic mosaic of coevolution. Am. Nat. 153: S1–S14.CrossRefGoogle Scholar
  61. Tiffney, B. H. (1984). Seed size, dispersal syndromes, and the rise of the angiosperms: Evidence and hypotheses. Ann. Mo. Bot. Gard. 71: 551–576.Google Scholar
  62. Tiffney, B. H., and Mazer, S. J. (1995). Angiosperm growth habit, dispersal and diversification reconsidered. Evol. Ecol. 9: 93–117.CrossRefGoogle Scholar
  63. Ungar, P. S. (1995). Fruit preferences of four sympatric primates species at Ketambe, Nothern Sumatra, Indonesia. Int. J. Primatol. 16: 221–245.Google Scholar
  64. van der Pijl, L. (1982). Principles of Dispersal in Higher Plants. Springer-Verlag, Berlin.Google Scholar
  65. van Roosmalen, M. G. M. (1985a). Fruits of the Guianan Flora. Institute of Systematic Botany Utrecht University and Silvicultural Department of Wageningen Agricultural University, Wageningen.Google Scholar
  66. van Roosmalen, M. G. V. (1985b). Habitat preferences, diet, feeding strategy, and social organization of the black spider monkey (Ateles paniscus paniscus Linnaeus 1758) in Surinam. Acta Amazonica 15: 1–238.Google Scholar
  67. van Schaik, C. P., Terborgh, J. W., and Wright, S. J. (1993). The phenology of tropical forests: Adaptive significance and consequences for primary consumers. Ann. Rev. Ecol. Syst. 24: 353–377.CrossRefGoogle Scholar
  68. Wheelwright, N. T., and Orians, G. H. (1982). Seed dispersal by animals: Contrasts with pollen dispersal, problems of terminology, and constraints on coevolution. Am. Nat. 119: 402–413.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Sabrina E. Russo
    • 1
    • 5
  • Christina J. Campbell
    • 2
  • J. Lawrence Dew
    • 3
  • Pablo R. Stevenson
    • 4
  • Scott A. Suarez
    • 4
  1. 1.Department of Animal BiologyUniversity of IllinoisUrbanaUSA
  2. 2.Department of AnthropologyPomona CollegeClaremontUSA
  3. 3.Department of ESPM, Div. I.B.University of CaliforniaBerkeleyUSA
  4. 4.Department of AnthropologyState University of New York at Stony BrookStony BrookUSA
  5. 5.Center for Tropical Forest Science—Arnold Arboretum Asia ProgramHarvard UniversityCambridgeUSA

Personalised recommendations