International Journal of Primatology

, Volume 26, Issue 2, pp 295–319 | Cite as

Foraging Success, Agonism, and Predator Alarms: Behavioral Predictors of Cortisol in Lemur catta

Article

Abstract

Primate social grouping is understood as an adaptive strategy for mitigating environmental selection pressures, but the relative importance of various pressures may vary. Physiological measures of well-being can show their short-term impacts and suggest their relative importance and capacity to provide ultimate or proximate control of group size. I examined correlations between pressures commonly proposed as causes of social grouping (foraging success, intergroup and intragroup agonism, and predation risk) and individual levels of fecal cortisol, a hormonal stress measure, in a free-ranging population of Lemur catta. I collected behavioral data on 45 female Lemur catta at Berenty Reserve, Madagascar, over 3 seasons (August 1999-July 2000) and determined individual cortisol levels from 474 fecal samples. Neither predator alarm rates nor intragroup agonism rates correlated with cortisol levels in any season. However, females with low daily food intake and high rates of escalated intergroup defense exhibited higher cortisol levels. The data suggest that acquisition and defense of food resources are principal challenges in Lemur catta, and may be important factors determining social grouping and other behavioral or life history adaptations.

Keywords

Lemur catta cortisol agonism predation food intake 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts, S. C., Sapolsky, R. M., and Altmann, J. (1992). Behavioral, endocrine, and immunological correlates of immigration by an aggressive male into a natural primate group. Horm. Behav. 26: 167–178.PubMedGoogle Scholar
  2. Altmann, J. (1974). Observational study of behavior: sampling methods. Behaviour 49: 227–265.PubMedGoogle Scholar
  3. Altmann, S. A. (1998). Foraging for Survival, Univ. of Chicago Press, Chicago.Google Scholar
  4. Bradley, A. J. (1980). Stress and mortality in a small marsupial (Antechinus stuartii, Macleay). Gen. Comp. Endocrinol. 40: 188–200.PubMedGoogle Scholar
  5. Cavigelli, S. A. (1998). Fecal cortisol levels relative to behavior in a free-ranging primate: adaptive aspects of a glucocorticoid hormone. PhD dissertation, Duke University.Google Scholar
  6. Cavigelli, S. A. (1999). Behavioural patterns associated with faecal cortisol levels in free-ranging female ring-tailed lemurs, Lemur catta. Anim. Behav. 57: 935–944.PubMedGoogle Scholar
  7. Cavigelli, S. A., Dubovick, T., Levash, W., Jolly, A., and Pitts, A. (2003). Female dominance status and fecal corticoids in a cooperative breeder with low reproductive skew: ring-tailed lemurs (Lemur catta). Horm. Behav. 43: 166–179.PubMedGoogle Scholar
  8. Chapman, C. A., and Chapman, L. J. (2000). Determinants of group size in primates: the importance of travel costs. In Boinski, S. (ed.), On the Move, Univ of Chicago Press, Chicago.Google Scholar
  9. Creel, S. (2001). Social dominance and stress hormones. Trends in Ecol. Evol. 19: 491–497.Google Scholar
  10. Foley, C. A. H., Papageorge, S., and Wasser, S. K. (2001). Noninvasive stress and reproductive measures of social and ecological pressures in free-ranging African elephants. Conserv. Biol. 15: 1134–1142.Google Scholar
  11. Hofer, H., and East, M. L. (1998). Biological Conservation and Stress. Adv. Stud. Behav. 27: 405–525.Google Scholar
  12. Jolly, A. (1966). Lemur behavior: a Madagascar field study, University of Chicago Press, Chicago.Google Scholar
  13. Jolly, A. (1984). The puzzle of female feeding priority. In Small, M. F. (ed.), Female primates: studies by women primatologists, Alan R. Liss, New York, pp. 197–215.Google Scholar
  14. Jolly, A., Caless, S., Cavigelli, S., Gould, L., Pereira, M. E., Pitts, A., Pride, R. E., Rabenandrasana, H. D., Walker, J. D., and Zafison, T. (2000). Infant killing, wounding, and predation in Eulemur and Lemur. Int. J. Primat. 21: 21–40.Google Scholar
  15. Jolly, A., Dobson, A., Rasamimanana, H. M., Walker, J., O’Connor, S., Solberg, M., and Perel, V. (2002). Demography of Lemur catta at Berenty Reserve, Madagascar: Effects of troop size, habitat, and rainfall. Int. J. Primatol. 23: 327–355.Google Scholar
  16. Jolly, A., and Pride, E. (1999). Troop histories and range inertia of Lemur catta at Berenty, Madagascar: a 33-year perspective. Int. J. of Primat. 20: 359–373.Google Scholar
  17. Jolly, A., Rasamimanana, H. R., Kinnaird, M. F., O’Brien, T. G., Crowley, H. M., and Harcourt, C. S. (1993). Territoriality in Lemur catta groups during the birth season at Berenty, Madagascar. In Kappeler, P. M., and Ganzhorn, J. U. (eds.), Lemur social systems and their ecological basis, Plenum, New York, pp. 85–109.Google Scholar
  18. Jones, K. C. (1983). Inter-group transfer of Lemur catta at Berenty, Madagscar. Folia Primatol. 40: 145–160.PubMedGoogle Scholar
  19. Judge, P. G., and de Waal, F. B. M. (1997). Rhesus monkey behaviour under diverse population densities: coping with long-term crowding. Anim. Behav. 54: 643–662.PubMedGoogle Scholar
  20. Kappeler, P. M. (1990). Female dominance in Lemur catta: more than just female feeding priority? Folia Primatol. 55: 92–95.CrossRefPubMedGoogle Scholar
  21. Kappeler, P. M. (1993). Reconciliation and post-conflict behavior in ringtailed lemurs, Lemur catta, and redfronted lemurs, Eulemur fulvus. Anim. Behav. 45: 901–915.Google Scholar
  22. Maynard Smith, J., and Parker, G. A. (1976). The logic of asymmetric contests. Anim. Behav. 24: 159–175.Google Scholar
  23. Mertl-Millhollen, A. S. (1988). Olfactory demarcation of territorial but not home range boundaries by Lemur catta. Folia Primatol. 50: 175–187.PubMedCrossRefGoogle Scholar
  24. Palagi, E., Paoli, T., and Tarli, S. B. (2005). Aggression and reconciliation in two captive groups of Lemur catta. Int. J. Primat. 26: 279–294.Google Scholar
  25. Parker, G. A., and Rubenstein, D. I. (1981). Role assessment, reserve strategy, and acquisition of information in asymmetric animal conflicts. Anim. Behav. 29: 221–240.Google Scholar
  26. Pereira, M. E. (1993). Agonistic interaction, dominance relation, and ontogenic trajectories in ringtailed lemurs. In Pereira, M. E., and Fairbanks, L. A. (eds.), Juvenile Primates: Life history, development, and behavior, Oxford University Press, New York, pp. 285–305.Google Scholar
  27. Pereira, M. E., and Kappeler, P. M. (1997). Divergent systems of agonistic behavior in lemurid primates. Behaviour 134: 225–274.Google Scholar
  28. Pereira, M. E., Strohecker, R. A., Cavigelli, S. A., Hughes, C. L., and Pearson, D. D. (1999). Metabolic strategy and social behavior in Lemuridae. In Rakotosamimanana, B., Rasamimanana, H., Ganzhorn, J. U., and Goodman, S. M. (eds.), New directions in lemur studies Kluwer Academic/Plenum Publishers, New York.Google Scholar
  29. Pride, R. E. (in press). High faecal glucocorticoid levels predict mortality in ring-tailed lemurs (Lemur catta). Biol. Lett. Google Scholar
  30. Ray, J. C., and Sapolsky, R. M. (1992). Styles of male social behavior and their endocrine correlates among high-ranking wild baboons. Am. J. Primatol. 28: 231–250.Google Scholar
  31. Romero, L. M., and Wikelski, M. (2001). Corticosterone levels predict survival probabilities of Galapagos marine iguanas during El Nino events. Proc. Nat. Acad. Sci. 98: 7366–7370.PubMedGoogle Scholar
  32. Rubenstein, D. I. (1981). Population density, resource patterning, and territoriality in the Everglades pygmy sunfish. Anim. Behav. 29: 155–172.Google Scholar
  33. Rubenstein, D. I., and Wrangham, R. W. (eds.) (1982). Ecological aspects of Social Evolution: Birds and Mammals. Princeton: Princeton University Press.Google Scholar
  34. Sapolsky, R. M. (1986). Endocrine and behavioral correlates of drought in the wild baboons. Am. J. Primatol. 11: 217–226.Google Scholar
  35. Sapolsky, R. M. (1992). Neuroendocrinology of the stress-response. In Becker, J. B., Breedlove, S. M., and Crews, D. (eds.), Behavioral endocrinology, The MIT Press, Cambridge, pp. 287–324.Google Scholar
  36. Sapolsky, R. M., and Ray, J. (1989). Styles of dominance and their endocrine correlates among wild olive baboons (Papio anubis). Am. J. Primatol. 18: 1–13.Google Scholar
  37. Sapolsky, R. M., Romero, L. M., and Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21: 55–89.PubMedGoogle Scholar
  38. Sauther, M. L. (1989). Antipredator behavior in troops of free-ranging Lemur catta at Beza-Mahafaly Special Reserve, Madagascar. Int. J. Primat. 10: 595–606.Google Scholar
  39. Sauther, M. L. (1993). The dynamics of feeding competition in wild populations of ringtailed lemurs (Lemur catta). In Kappeler, P. M., and Ganzhorn, J. (eds.), Lemur social systems and their ecological basis Plenum, New York, pp. 135–152.Google Scholar
  40. Sauther, M. L., Sussman, R. W., and Gould, L. (1999). The socioecology of the ringtailed lemur: thirty-five years of research. Evol. Anthropol. 8: 120–132.Google Scholar
  41. Scheuerlein, A., Van’t Hof, T. J., and Gwinner, E. (2001). Predators as stressors? Physiological and reproductive consequences of predation risk in tropical stonechats (Saxicola torquata axillaris). Proc. Roy. Soc. B 268: 1575–1582.Google Scholar
  42. Selye, H. (1973). The evolution of the stress concept. Am. Sci. 61: 692–699.PubMedGoogle Scholar
  43. Terborgh, J. (1983). Five new world primates: A study in comparative ecology, Princeton University Press, Princeton.Google Scholar
  44. Terborgh, J., and Janson, C. H. (1986). The socioecology of primate groups. Ann. Rev. Ecol. Syst. 17: 111–135.Google Scholar
  45. van Schaik, C. P. (1983a). On the ultimate causes of primate social systems. Behaviour 85: 91–117.Google Scholar
  46. van Schaik, C. P. (1983b). Why are diurnal primates living in groups? Behaviour 87: 120–144.Google Scholar
  47. van Schaik, C. P. (1989). The ecology of social relationships amongst female primates. In Standen, V., and Foley, R. A. (eds.), Comparative socioecology: the behavioral ecology of humans and other mammals Blackwell Scientific, Boston, pp. 195–218.Google Scholar
  48. Wasser, S. K., Hunt, K. E., Brown, J. L., Cooper, C., Crockett, C. M., Bechert, U., Millspaugh, J. J., Larson, S., and Monfort, S. L. (2001). A generalized fecal glucocorticoid assay for use in a diverse array of non-domestic mammalian and avian species. Gen. Comp. Endo. 120: 260–275.Google Scholar
  49. Wikelski, M., Wong, V., Chevalier, B., Rattenberg, N., and Snell, H. (2002). Galapagos Islands: Marine iguanas die from trace oil pollution. Nature 417: 607.CrossRefPubMedGoogle Scholar
  50. Wingfield, J. C., Hunt, K., Breuner, C., Dunlap, K., Fowler, G. S., Freed, L., and Lepson, J. (1997). Environmental stress, field endocrinology, and conservation biology. In Clemmons, J. R., and Buchholz, R., (eds.), Behavioral approaches to conservation in the wild, Cambridge Univ. Press, Cambridge, pp. 95–131.Google Scholar
  51. Wingfield, J. C., Maney, D. L., Breuner, C. W., Jacobs, J. D., Lynn, S., Ramenofsky, M., and Richardson, R. D. (1998). Ecological bases of hormone-behavior interactions: the “emergency life-history stage.” Am. Zool. 38: 191–206.Google Scholar
  52. Wrangham, R. W. (1980). An ecological model of female-bonded primate groups. Behaviour 75: 262–300.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Ecology and Evolutionary BiologyPrinceton UniversityPrinceton
  2. 2.Department of BiologyThe College of New JerseyEwing

Personalised recommendations