Advertisement

A Foucauldian Analysis of Representations of Mathematicians in Lower Secondary Mexican Mathematics Textbooks

  • Mario Sánchez AguilarEmail author
  • Apolo Castaneda
Article

Abstract

We report on a study focused on identifying how the notion of “the mathematician” is constructed in lower secondary Mexican mathematics textbooks. To conduct the study, we adopted a Foucauldian approach that allows us to identify the way in which the notion of the mathematician is constructed but also to delineate the possible effects that such construction may have on students’ subjectivities. Results show that the representations of mathematicians that most frequently appear in these textbooks are males, mainly Europeans, who lived in ancient times. The representations of female mathematicians are almost nil. We conceptualize the representations of mathematicians contained in these mathematics textbooks as part of a discourse that creates realities and constructs subjectivities, and suggest a theoretical explanation of the mechanisms that allow these representations to circulate and to be perpetuated.

Keywords

Foucault Discourse Representations of mathematicians Mathematics textbooks 

Notes

Acknowledgments

We want to thank the anonymous reviewers who, through the reviewing process of this paper, helped us to develop our understanding of Foucauldian discourse analysis.

References

  1. Aguilar, M. S., Rosas, A., Zavaleta, J. G. M. & Romo-Vázquez, A. (2016). Exploring high-achieving students’ images of mathematicians. International Journal of Science and Mathematics Education, 14(3), 527–548.  https://doi.org/10.1007/s10763-014-9586-1.Google Scholar
  2. Aiken, L. R. (1970). Attitudes toward mathematics. Review of Educational Research, 40(4), 551–596.  https://doi.org/10.3102/00346543040004551.Google Scholar
  3. Arriaga, A. & Benítez, M. M. (2014). Matemáticas por competencias [Mathematics by competences]. Mexico: Pearson Educación.Google Scholar
  4. Arribas-Ayllon, M. & Walkerdine, V. (2008). Foucaldian discourse analysis. In C. Willig & W. Stainton-Rogers (Eds.), The SAGE handbook of qualitative research in psychology (pp. 91–108). UK: SAGE.  https://doi.org/10.4135/9781848607927.n6.Google Scholar
  5. Beswick, K. (2012). Teachers’ beliefs about school mathematics and mathematicians’ mathematics and their relationship to practice. Educational Studies in Mathematics, 79(1), 127–147.  https://doi.org/10.1007/s10649-011-9333-2.Google Scholar
  6. Brooks, K. M. (2008). A content analysis of physical science textbooks with regard to the nature of science and ethnic diversity (Doctoral dissertation). Retrieved from ProQuest Dissertations and Theses (UMI Number: 3309542).Google Scholar
  7. Ceglie, R. & Olivares, V. (2012). Representation of diversity in science textbooks. In H. Hickman & B. J. Porfilio (Eds.), The new politics of the textbook. Problematizing the portrayal of marginalized groups in textbooks (pp. 49–68). Rotterdam, Netherlands: Sense Publishers.  https://doi.org/10.1007/978-94-6091-912-1_4.
  8. Chambers, D. W. (1983). Stereotypic images of the scientist: The draw-a-scientist test. Science Education, 67(2), 255–265.  https://doi.org/10.1002/sce.3730670213.Google Scholar
  9. Davis, P. J. & Hersh, R. (1981). The mathematical experience. Brighton, England: Harvester.Google Scholar
  10. Dowling, P. (1998). The sociology of mathematics education: Mathematical myths/pedagogic texts. London, England: The Falmer Press.Google Scholar
  11. Evans, J., Tsatsaroni, A. & Czarnecka, B. (2014). Mathematical images in advertising: Constructing difference and shaping identity, in global consumer culture. Educational Studies in Mathematics, 85(1), 3–27.  https://doi.org/10.1007/s10649-013-9496-0.Google Scholar
  12. Finson, K. D. (2002). Drawing a scientist: What we do and do not know after fifty years of drawings. School Science and Mathematics, 102(7), 335–345.  https://doi.org/10.1111/j.1949-8594.2002.tb18217.x.Google Scholar
  13. Foucault, M. (1972). The archeology of knowledge and the discourse on language (A. Sheridan, Trans.). New York, NY: Pantheon Books.Google Scholar
  14. Foucault, M. (1977). Discipline and punish. The birth of the prison (A. M. Sheridan Smith, Trans.). New York, NY: Vintage Books.Google Scholar
  15. Foucault, M. (1978). The history of sexuality. Volume I: An introduction (R. Hurley, Trans.). New York, NY: Pantheon Books.Google Scholar
  16. Foucault, M. (1980a). Power/knowledge: Selected interviews and other writings 1972–1977 (C. Gordon, Ed.; C. Gordon, L. Marshall, J. Mepham, K. Soper, Trans.). New York, NY: Pantheon Books.Google Scholar
  17. Foucault, M. (1980b). The history of sexuality: Interview. Oxford Literary Review, 4(2), 3–14.  https://doi.org/10.3366/olr.1980.002.Google Scholar
  18. Foucault, M. (1982). The subject and the power. Critical Inquiry, 8(4), 777–795.Google Scholar
  19. Foucault, M. (2003). “Society must be defended”. Lectures at the Collège de France 1975–1976 (M. Bertani & A. Fontana, Eds.; D. Macey, Trans.). New York, NY: Picador.Google Scholar
  20. Furinghetti, F. (1993). Images of mathematics outside the community of mathematicians: Evidence and explanations. For the Learning of Mathematics, 13(2), 33–38.Google Scholar
  21. Gutiérrez, R. (2013). Why (urban) mathematics teachers need political knowledge. Journal of Urban Mathematics Education, 6(2), 7–19.Google Scholar
  22. Herbel-Eisenmann, B. & Wagner, D. (2007). A framework for uncovering the way a textbook may position the mathematics learner. For the Learning of Mathematics, 27(2), 8–14.Google Scholar
  23. Howson, A. G., Kahane, J.-P. & Pollak, H. (1988). The popularization of mathematics. L’Enseignement Mathématique, 34, 205–212.  https://doi.org/10.5169/seals-56594.Google Scholar
  24. Kollosche, D. (2016). Criticising with Foucault: Towards a guiding framework for socio-political studies in mathematics education. Educational Studies in Mathematics, 91(1), 73–86.  https://doi.org/10.1007/s10649-015-9648-5.Google Scholar
  25. Kollosche, D. (2017). A socio-critical analysis of students’ perceptions of mathematics. In H. Straehler-Pohl, N. Bohlmann, & A. Pais (Eds.), The disorder of mathematics education. Challenging the sociopolitical dimensions of research (pp. 173–189). Switzerland: Springer.  https://doi.org/10.1007/978-3-319-34006-7_11.Google Scholar
  26. Mandl, H. & Levin, J. R. (Eds.). (1989). Knowledge acquisition from text and pictures. North-Holland, Netherlands: Elsevier.Google Scholar
  27. Martin, L. & Gourley-Delaney, P. (2014). Students’ images of mathematics. Instructional Science, 42(4), 595–614.  https://doi.org/10.1007/s11251-013-9293-2.Google Scholar
  28. McBride, M. (1989). A Foucaldian analysis of mathematical discourse. For the Learning of Mathematics, 9(1), 40–46.Google Scholar
  29. Mead, M. & Métraux, R. (1957). Image of the scientist among high-school students. Science, 126(3270). 384–390.  https://doi.org/10.1126/science.126.3270.384.
  30. Medina-Jerez, W., Middleton, K. V. & Orihuela-Rabaza, W. (2011). Using the DAST-C to explore Colombian and Bolivian students’ images of scientists. International Journal of Science and Mathematics Education, 9(3), 657–690.  https://doi.org/10.1007/s10763-010-9218-3.Google Scholar
  31. Mendick, H. (2005). Mathematical stories: Why do more boys than girls choose to study mathematics at AS-level in England? British Journal of Sociology of Education, 26(2), 225–241.  https://doi.org/10.1080/0142569042000294192.Google Scholar
  32. Mendick, H. (2007). Mathematical images and identities: Education, entertainment, social justice. Full research report ESRC end of award report [RES-000-23-1454]. Swindon: ESRC. Retrieved from http://www.leeds.ac.uk/educol/documents/190670.pdf.
  33. Ministry of Education of Mexico (2010). Geografía Sexto Grado [Geography sixth grade]. Mexico: Secretaría de Educación Pública.Google Scholar
  34. Moreau, M.-P., Mendick, H. & Epstein, D. (2010). Constructions of mathematicians in popular culture and learners’ narratives: A study of mathematical and non-mathematical subjectivities. Cambridge Journal of Education, 40(1), 25–38.  https://doi.org/10.1080/03057640903567013.Google Scholar
  35. Mulkey, L. M. (1987). The use of a sociological perspective in the development of a science textbook evaluation instrument. Science Education, 71(4), 511–522.  https://doi.org/10.1002/sce.3730710404.Google Scholar
  36. Parker, I. (1994). Reflexive research and the grounding of analysis: Social psychology and the psy-complex. Journal of Community & Applied Social Psychology, 4(4), 239–252.  https://doi.org/10.1002/casp.2450040404.Google Scholar
  37. Piatek-Jimenez, K. (2008). Images of mathematicians: A new perspective on the shortage of women in mathematical careers. ZDM – The International Journal on Mathematics Education, 40(4), 633–646.  https://doi.org/10.1007/s11858-008-0126-8.Google Scholar
  38. Picker, S. H. & Berry, J. S. (2000). Investigating pupils’ images of mathematicians. Educational Studies in Mathematics, 43(1), 65–94.  https://doi.org/10.1023/A:1017523230758.Google Scholar
  39. Piper (2017, February 22). Hands off my confidence [Blog post] Retrieved from http://blogs.ams.org/inclusionexclusion/2017/02/22/hands-off-my-confidence/.
  40. Ramírez, C. M., Castillo, C. R., Vergara, R. D., Flores, O. M. E. & Azpeitia, V. J. G. (2015). Matemáticas 3. Desafíos Matemáticos [Mathematics 3. Mathematical challenges]. Mexico: Fernández Educación.Google Scholar
  41. Rensaa, R. J. (2006). The image of a mathematician. Philosophy of Mathematics Education Journal, 19, 1–18.Google Scholar
  42. Rock, D. & Shaw, J. M. (2000). Exploring children’s thinking about mathematicians and their work. Teaching Children Mathematics, 6(9), 550–555.Google Scholar
  43. Sánchez, S. F. (2013). Matemáticas 2. Construcción del pensamiento. [Mathematics 2. Thinking construction]. Mexico: Fernández Educación.Google Scholar
  44. Wagner, D. (2012). Opening mathematics texts: Resisting the seduction. Educational Studies in Mathematics, 80(1), 153–169.  https://doi.org/10.1007/s10649-011-9372-8.Google Scholar
  45. Walshaw, M. (2001). A Foucauldian gaze on gender research: What do you do when confronted with the tunnel at the end of the light? Journal for Research in Mathematics Education, 32(5), 471–492.Google Scholar
  46. Walshaw, M. (2007). Working with Foucault in education. Rotterdam, Netherlands: Sense Publishers.Google Scholar
  47. Willig, C. (2013). Introducing qualitative research in psychology (3rd ed.). Maidenhead, UK: Open University Press.Google Scholar
  48. Wilson, J. L. & Latterell, C. M. (2001). Nerds? Or nuts? Pop culture portrayals of mathematicians. ETC: A Review of General Semantics, 58(2), 172–178.Google Scholar

Copyright information

© Ministry of Science and Technology, Taiwan 2019

Authors and Affiliations

  1. 1.Programa de Matemática Educativa, CICATA LegariaInstituto Politécnico NacionalMexico CityMexico
  2. 2.DIE-CINVESTAV, Departamento de Investigaciones EducativasCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico CityMexico

Personalised recommendations