Advertisement

Pre-service Primary Science Teachers’ Abilities for Solving a Measurement Problem Through Inquiry

  • Antonio García-Carmona
Article

Abstract

This article presents a qualitative descriptive-interpretive study about the abilities of pre-service primary science teachers (PPTs) to solve a measurement problem put to them as an activity of scientific inquiry. The participants in the study were 23 PPTs receiving training in science teaching, organized into small groups to solve the proposed problem. The data were collected through reports they prepared from a script with open-response questions that referred on the one hand to the planning, development and conclusions obtained with the scientific inquiry and on the other to promoting the PPTs’ metacognitive reflection regarding the difficulties encountered, the lessons learned and their proposals for improvement for future activities on similar measurements. The information was analysed in three phases to increasingly refine the coding of this. The results revealed that, overall, the PPTs were able to complete the scientific inquiry with a fairly acceptable degree of efficacy. A discussion of the results emphasizes the usefulness of the procedural-type scientific inquiry activities to initiate PPTs in their approach to inquiry-based science education.

Keywords

Experimental activity Initial teacher training Inquiry-based science education Measurement Primary education 

Notes

Funding Information

This work was supported by the Ministry of Economy and Competitiveness (Spain) under grant EDU2013-41003-P.

References

  1. Abd-El-Khalick, F., Boujaoude, S., Duschl, R., Lederman, N. G., Mamlok-Naaman, R., Hofstein, A., . . . Tuan, H.-L. (2004). Inquiry in science education: International perspectives. Science Education, 88(3), 397–419.Google Scholar
  2. Abrahams, I. (2009). Does practical work really motivate? A study of the affective value of practical work in secondary school science. International Journal of Science Education, 31(17), 2335–2353.CrossRefGoogle Scholar
  3. Abrahams, I., & Millar, R. (2008). Does practical work really work? A study of the effectiveness of practical work as a teaching and learning method in school science. International Journal of Science Education, 30(14), 1945–1969.CrossRefGoogle Scholar
  4. Arnold, J. C., Kremer, K., & Mayer, J. (2014). Understanding students’ experiments—What kind of support do they need in inquiry tasks? International Journal of Science Education, 36(16), 2719–2749.CrossRefGoogle Scholar
  5. Aydoğdu, B. (2015). Examining preservice science teachers’ skills of formulating hypotheses and identifying variables. Asia-Pacific Forum on Science Learning and Teaching, 16(1), 1–38.Google Scholar
  6. Banchi, H., & Bell, R. (2008). The many levels of inquiry. Science and Children, 46(2), 26–29.Google Scholar
  7. Barolli, E., Laburú, C. E., & Guridi, V. M. (2010). Laboratorio didáctico de ciencias: Caminos de investigación [Didactic laboratory of science: Research paths]. Revista Electrónica de Enseñanza de las Ciencias, 9(1), 88–110.Google Scholar
  8. Bell, T., Urhahne, D., Schanze, S., & Ploetzner, R. (2010). Collaborative inquiry learning: Models, tools and challenges. International Journal of Science Education, 32(3), 349–377.CrossRefGoogle Scholar
  9. Bertsch, C., Kapelari, S., & Unterbruner, U. (2014). From cookbook experiments to inquiry based primary science: Influence of inquiry based lessons on interest and conceptual understanding. Inquiry in Primary Science Education, 1, 20–31.Google Scholar
  10. Bevins, S., & Price, G. (2016). Reconceptualising inquiry in science education. International Journal of Science Education, 38(1), 17–29.CrossRefGoogle Scholar
  11. Bulunuz, M. (2012). Motivational qualities of hands-on science activities for Turkish preservice kindergarten teachers. Eurasia Journal of Mathematics, Science & Technology Education, 8(2), 73–82.Google Scholar
  12. Bunterm, T., Lee, K., Lan, J. N., Srikoon, S., Vangpoomyai, P., Rattanavongsa, J., & Rachahoon, G. (2014). Do different levels of inquiry lead to different learning outcomes? A comparison between guided and structured inquiry. International Journal of Science Education, 36(12), 1937–1959.CrossRefGoogle Scholar
  13. Cañal, P., Travé, G., & Pozuelos, F. J. (2011). Análisis de obstáculos y dificultades de profesores y estudiantes en la utilización de enfoques de investigación escolar [An analysis of the teachers’ and students’ obstacles and difficulties on the use of inquiry approach]. Investigación en la Escuela, 73, 5–26.Google Scholar
  14. Cañal, P., Criado, A. M., García-Carmona, A., & Muñoz, G. (2013). La enseñanza relativa al medio en las aulas españolas de Educación Infantil y Primaria: Concepciones didácticas y práctica docente [The teaching related to the environment in the Spanish classrooms of Infant and Primary Education: Didactic conceptions and teaching practice]. Investigación en la Escuela, 81, 21–42.Google Scholar
  15. Cañal, P., García-Carmona, A., & Cruz-Guzmán, M. (2016). Didáctica de las Ciencias Experimentales en Educación Primaria [Didactics of Experimental Sciences in Primary Education]. Madrid, Spain: Paraninfo.Google Scholar
  16. Capps, D. K., & Crawford, B. A. (2013). Inquiry-based professional development: What does it take to support teachers in learning about inquiry and nature of science? International Journal of Science Education, 35(12), 1947–1978.CrossRefGoogle Scholar
  17. Caussarieu, A., & Tiberghien, A. (2017). When and why are the values of physical quantities expressed with uncertainties? A case study of a physics undergraduate laboratory course. International Journal of Science and Mathematics Education, 15(6), 997–1015.CrossRefGoogle Scholar
  18. Cortés, A. L., & Gándara, M. (2006). La construcción de problemas en el laboratorio durante la formación del profesorado: Una experiencia didáctica [Building problems in the laboratory during teacher training: A didactic experience]. Enseñanza de las Ciencias, 25(3), 435–450.Google Scholar
  19. Cortés, A. L., Gándara, M., Calvo, J. M., Martínez, M. B., Ibarra, M., Arlegui, J., & Gil, M. J. (2012). Expectativas, necesidades y oportunidades de los maestros en formación ante la enseñanza de las ciencias en la educación primaria [Expectations, needs and opportunities of pre-service teachers in view of science teaching in primary education]. Enseñanza de las Ciencias, 30(3), 155–176.Google Scholar
  20. Crawford, B. A. (2007). Learning to teach science as inquiry in the rough and tumble of practice. Journal of Research in Science Teaching, 44(4), 613–642.CrossRefGoogle Scholar
  21. Criado, A. M., & García-Carmona, A. (2011). Las experiencias prácticas para el conocimiento del medio (natural y tecnológico) en la formación inicial de maestros [The practical experiences for the knowledge of the environment (natural and technological) in the initial formation of teachers]. Investigación en la Escuela, 74, 73–88.Google Scholar
  22. Cruz-Guzmán, M., García-Carmona, A. & Criado, A. M. (2017). An analysis of the questions proposed by elementary pre-service teachers when designing experimental activities as inquiry. International Journal of Science Education.  https://doi.org/10.1080/09500693.2017.1351649.
  23. Ferrés, C., Marbà, A., & Sanmartí, N. (2015). Trabajos de indagación de los alumnos: Instrumentos de evaluación e identificación de dificultades [Students’ inquiry works: Assessment tools and identification of difficulties]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 12(1), 22–37.CrossRefGoogle Scholar
  24. Flores, J., Caballero, M. C., & Moreira, M. A. (2009). El laboratorio en la enseñanza de las ciencias: Una visión integral en este complejo ambiente de aprendizaje [The science laboratory teaching: An integral vision in this complex learning environment]. Revista de Investigación, 33, 75–111.Google Scholar
  25. García-Carmona, A. (2012). Cómo enseñar naturaleza de la ciencia (NDC) a través de experiencias escolares de investigación científica [How to teach Nature of Science (NDC) through scholarly scientific research experiences]. Alambique, 72, 55–63.Google Scholar
  26. García-Carmona, A., & Acevedo, J. A. (2016). Concepciones de estudiantes de profesorado de Educación Primaria sobre la naturaleza de la ciencia: Una evaluación diagnóstica a partir de reflexiones en equipo [Concepts of primary school teacher students on the nature of science: A diagnostic evaluation based on team reflections]. Revista Mexicana de Investigación Educativa, 21(69), 583–610.Google Scholar
  27. García-Carmona, A., & Cruz-Guzmán, M. (2016). ¿Con qué vivencias, potencialidades y predisposiciones inician los futuros docentes de Educación Primaria su formación en la enseñanza de la ciencia? [What experiences, potentials and predispositions initiate future teachers of Primary Education training in teaching science?]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 13(2), 440–458.Google Scholar
  28. García-Carmona, A., Cruz-Guzmán, M., & Criado, A. M. (2014). “¿Qué hacías para aprobar los exámenes de ciencias, qué aprendiste y qué cambiarías?”. Preguntamos a futuros docentes de Educación Primaria [“What did you do to pass the science exams, what did you learn and what would you change?” We ask future teachers of Primary Education]. Investigación en la Escuela, 84, 31–46.Google Scholar
  29. García-Carmona, A., Criado, A. M., & Cruz-Guzmán, M. (2016). Prospective primary teachers’ prior experiences, conceptions, and pedagogical valuations of experimental activities in science education. International Journal of Science and Mathematics Education.  https://doi.org/10.1007/s10763-016-9773-3.
  30. García-Carmona, A., Criado, A. M., & Cruz-Guzmán, M. (2017). Primary pre-service teachers’ skills in planning a guided scientific inquiry. Research in Science Education, 47(5), 989–1010.Google Scholar
  31. Godino, J. D., Batanero, M. C., & Roa, R. (2002). Medida de magnitudes y su didáctica para maestros [Elementary teacher education on measurement of magnitudes]. Granada, Spain: Universidad de Granada.Google Scholar
  32. Guisasola, J., Ceberio, M., & Zubimendi, J. L. (2006). University students’ strategies for constructing hypothesis when tackling paper-and-pencil tasks in physics. Research in Science Education, 36(3), 163–186.CrossRefGoogle Scholar
  33. Harlen, W. (2013). Assessment & inquiry-based science education: Issues in policy and practice. Trieste, Italy: IAP.Google Scholar
  34. Harlen, W. (2014). Helping children’s development of inquiry skills. Inquiry in Primary Science Education, 1, 5–19.Google Scholar
  35. Hodson, D. (2005). Teaching and learning chemistry in the laboratory: A critical look at the research. Educación Química, 16(1), 30–38.CrossRefGoogle Scholar
  36. Hodson, D. (2014). Learning science, learning about science, doing science: Different goals demand different learning methods. International Journal of Science Education, 36(15), 2534–2553.CrossRefGoogle Scholar
  37. Hofstein, A., Navon, O., Kipnis, M., & Mamlok-Naaman, R. (2005). Developing students’ ability to ask more and better questions resulting from inquiry-type chemistry laboratories. Journal of Research in Science Teaching, 42(7), 791–806.CrossRefGoogle Scholar
  38. Kanari, Z., & Millar, R. (2004). Reasoning from data: How students collect and interpret data in science investigations. Journal of Research in Science Teaching, 41(7), 748–769.CrossRefGoogle Scholar
  39. Kawalkar, A., & Vijapurkar, J. (2013). Scaffolding science talk: The role of teachers’ questions in the inquiry classroom. International Journal of Science Education, 35(12), 2004–2027.CrossRefGoogle Scholar
  40. Kim, M., & Tan, A.-L. (2011). Rethinking difficulties of teaching inquiry-based practical work: Stories from elementary pre-service teachers. International Journal of Science Education, 33(4), 465–486.CrossRefGoogle Scholar
  41. Kipnis, M., & Hofstein, A. (2008). The inquiry laboratory as a source for development of metacognitive skills. International Journal of Science and Mathematics Education, 6(3), 601–627.CrossRefGoogle Scholar
  42. Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75–86.CrossRefGoogle Scholar
  43. Koksal, E. A., & Berberoglu, G. (2014). The effect of guided-inquiry instruction on 6th grade Turkish students’ achievement, science process skills, and attitudes toward science. International Journal of Science Education, 36(1), 66–78.CrossRefGoogle Scholar
  44. Kyza, E. A. (2009). Middle-school students’ reasoning about alternative hypotheses in a scaffolded, software-based inquiry investigation. Cognition and Instruction, 27(4), 277–311.CrossRefGoogle Scholar
  45. Lucero, M., Valcke, M., & Schellens, T. (2013). Teachers’ beliefs and self-reported use of inquiry in science education in public primary schools. International Journal of Science Education, 35(8), 1407–1423.CrossRefGoogle Scholar
  46. McLaughlin, C. A., & MacFadden, B. J. (2014). At the elbows of scientists: Shaping science teachers’ conceptions and enactment of inquiry-based instruction. Research in Science Education, 44(6), 927–947.CrossRefGoogle Scholar
  47. Mellado, V., Blanco, L. J. & Ruiz, C. (1998). A framework for learning to teach science in initial primary teacher education. Journal of Science Teacher Education, 9(3), 195–219.Google Scholar
  48. Minner, D. D., Levy, A. J., & Century, J. (2010). Inquiry-based science instruction—What is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47(4), 474–496.CrossRefGoogle Scholar
  49. Newman, W. J., Abell, S. K., Hubbard, P. D., McDonald, J., Otaala, J., & Martini, M. (2004). Dilemmas of teaching inquiry in elementary science methods. Journal of Science Teacher Education, 15(4), 257–279.CrossRefGoogle Scholar
  50. Nivalainen, V., Asikainen, M. A., & Hirvonen, P. E. (2013). Preservice teachers’ objectives and their experience of practical work. Physical Review Special Topics—Physics Education Research, 9(1), 010102.CrossRefGoogle Scholar
  51. Nivalainen, V., Asikainen, M. A., Sormunen, K., & Hirvonen, P. E. (2010). Preservice and inservice teachers’ challenges in the planning of practical work in physics. Journal of Science Teacher Education, 21(4), 393–409.CrossRefGoogle Scholar
  52. Oliver-Hoyo, M., & Allen, D. (2006). The use of triangulation methods in qualitative educational research. Journal of College Science Teaching, 35(4), 42–47.Google Scholar
  53. Ozdem, Y., Ertepinar, H., Cakiroglu, J., & Erduran, S. (2013). The nature of pre-service science teachers’ argumentation in inquiry-oriented laboratory context. International Journal of Science Education, 35(15), 2559–2586.CrossRefGoogle Scholar
  54. Priemer, B. & Hellwig, J. (2016). Learning about measurement uncertainties in secondary education: A model of the subject matter. International Journal of Science and Mathematics Education, 1–24.  https://doi.org/10.1007/s10763-016-9768-0
  55. Rocard, M., Csermely, P., Jorde, D., Lenzen, D., Walberg, H., & Hemmo, V. (2007). Science education now: A renewed pedagogy for the future of Europe. Brussels, Belgium: Directorate General for Research, Science, Economy and Society.Google Scholar
  56. Sadeh, I., & Zion, M. (2009). The development of dynamic inquiry performances within an open inquiry setting: A comparison to guided inquiry setting. Journal of Research in Science Teaching, 46(10), 1137–1160.CrossRefGoogle Scholar
  57. Schwichow, M., Zimmerman, C., Croker, S., & Härtig, H. (2016). What students learn from hands-on activities. Journal of Research in Science Teaching, 53(7), 980–1002.CrossRefGoogle Scholar
  58. Seale, C. (1999). The quality of qualitative research. London, England: SAGE.Google Scholar
  59. Seraphin, K. D., Philippoff, J., Kaupp, L., & Vallin, L. M. (2012). Metacognition as means to increase the effectiveness of inquiry-based science education. Science Education International, 23(4), 366–382.Google Scholar
  60. Seung, E., Park, S., & Jung, J. (2014). Exploring preservice elementary teachers’ understanding of the essential features of inquiry-based science teaching using evidence-based reflection. Research in Science Education, 44(4), 507–529.CrossRefGoogle Scholar
  61. Yang, K. K., Lee, L., Hong, Z. R., & Lin, H. S. (2016). Investigation of effective strategies for developing creative science thinking. International Journal of Science Education, 38(13), 2133–2151.CrossRefGoogle Scholar
  62. Yoon, H. G., Joung, Y. J., & Kim, M. (2012). The challenges of science inquiry teaching for pre-service teachers in elementary classrooms: Difficulties on and under the scene. Research in Science Education, 42(3), 589–608.CrossRefGoogle Scholar

Copyright information

© Ministry of Science and Technology, Taiwan 2017

Authors and Affiliations

  1. 1.Departamento de Didáctica de las Ciencias Experimentales y Sociales, Facultad de Ciencias de la EducaciónUniversidad de SevillaSevillaSpain

Personalised recommendations