• Konrad J. SchönbornEmail author
  • Susanne Bögeholz
Open Access


Recent curriculum reform promotes core competencies such as desired ‘content knowledge’ and ‘communication’ for meaningful learning in biology. Understanding in biology is demonstrated when pupils can apply acquired knowledge to new tasks. This process requires the transfer of knowledge and the subordinate process of translation across external representations. This study sought ten experts’ views on the role of transfer and translation processes in biology learning. Qualitative analysis of the responses revealed six expert themes surrounding the potential challenges that learners face, and the required cognitive abilities for transfer and translation processes. Consultation with relevant curriculum documents identified four types of biological knowledge that students are required to develop at the secondary level. The expert themes and the knowledge types exposed were used to determine how pupils might acquire and apply these four types of biological knowledge during learning. Based on the findings, we argue that teaching for understanding in biology necessitates fostering ‘horizontal’ and ‘vertical’ transfer (and translation) processes within learners through the integration of knowledge at different levels of biological organization.

Key words

biological knowledge expert data external representations transfer translation 

Supplementary material

10763_2009_9153_MOESM1_ESM.pdf (96 kb)
ESM 1 (PDF 1 MB)


  1. Ainsworth, S. (1999). The functions of multiple representations. Computers & Education, 33(2-3), 131–152.CrossRefGoogle Scholar
  2. Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183–198.CrossRefGoogle Scholar
  3. BLK - expertise (Ed.) (1997). Gutachten zur Vorbereitung des Programms “Steigerung der Effizienz des mathematisch-naturwissenschaftlichen Unterrichts”, Materialien, Heft 60. [] (accessed 17.06.2008).
  4. Carson, R. N. (2004). A taxonomy of knowledge types for use in curriculum design. Interchange, 35(1), 59–79.CrossRefGoogle Scholar
  5. Council of Ministers of Education (1995). Pan-Canadian Protocol for Collaboration on School Curriculum. [] (accessed 18.06.2008).
  6. de Jong, T., & Ferguson-Hessler, M. G. M. (1996). Types and qualities of knowledge. Educational Psychologist, 31(2), 105–113.CrossRefGoogle Scholar
  7. du Plessis, L., Anderson, T. R., & Grayson, D. J. (2003). Student difficulties with the use of arrow symbolism in biological diagrams. In J. Lewis, A. Magro, & L. Simonneaux (Eds.), Biology education for the real world: Student-teacher-citizen (pp. 89–103). Toulouse: Ecole Nationale de Formation Agronomique.Google Scholar
  8. Eigner-Thiel, S., & Bögeholz, S. (2004). Bildung für Nachhaltige Entwicklung aus Sicht von MultiplikatorInnen außerschulischer Bildungsträger [Views of multipliers of extra-curricular educational institutions regarding education for sustainable development]. Umweltpsychologie, 8(2), 80–100.Google Scholar
  9. Erickson, F. (1986). Qualitative methods in research on teaching. In M. Wittrock (Ed.), Handbook of research on teaching (pp. 119–161, 3rd ed.). New York: Macmillan.Google Scholar
  10. Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory. Chicago: Aldine.Google Scholar
  11. Hammann, M. (2006). Kompetenzförderung und Aufgabenentwicklung [Fostering competencies and development of competency-oriented tasks]. Der mathematische und naturwissenschaftliche Unterricht, 59(2), 85–95.Google Scholar
  12. Harms, U., Mayer, J., Hammann, M., Bayrhuber, H., & Kattmann, U. (2004). Kerncurriculum und Standards für den Biologieunterricht in der gymnasialen Oberstufe. In H.-E. Tenorth (Ed.), Kerncurriculum Oberstufe II – Biologie, Chemie, Physik, Geschichte, Politik. Weinheim: Beltz Verlag.Google Scholar
  13. Hasselhorn, M., & Mähler, C. (2000). Transfer: Theorien, Technologien und empirische Erfassung. In W. Hager (Ed.), Evaluation psychologischer Interventionsmaßnahmen: Standards und Kriterien: ein Handbuch (pp. 86–101). Bern: Verlag Hans Huber.Google Scholar
  14. Häussler, P., & Hoffmann, L. (2000). A curricular frame for physics education: Development, comparison with students’ interests, and impact on students’ achievement and self-concept. Science Education, 84(6), 689–705.CrossRefGoogle Scholar
  15. Khodor, J., Gould Halme, D., & Walker, G. C. (2004). A hierarchical biology concept framework: A tool for course design. Cell Biology Education, 3(2), 111–121.CrossRefGoogle Scholar
  16. KMK (2005). Bildungsstandards im Fach Biologie für den Mittleren Schulabschluss. München: Wolters Kluwer.Google Scholar
  17. Kozma, R. B., & Russell, J. (1997). Multimedia and understanding: Expert and novice responses to different representations of chemical phenomena. Journal of Research in Science Teaching, 34(9), 949–968.CrossRefGoogle Scholar
  18. Krajcik, J., McNeill, K. L., & Reiser, B. J. (2008). Learning-goals-driven design model: Developing curriculum materials that align with national standards and incorporate project-based pedagogy. Science Education, 92(1), 1–32.CrossRefGoogle Scholar
  19. Krathwohl, D. R. (2002). A revision of Bloom’s taxonomy: An overview. Theory into Practice, 41(4), 212–218.CrossRefGoogle Scholar
  20. Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Newbury Park, CA: Sage.Google Scholar
  21. Mayer, R. E. (2002). Rote versus meaningful learning. Theory into Practice, 41(4), 226–232.CrossRefGoogle Scholar
  22. Mayer, R. E. (2003). The promise of multimedia learning: Using the same instructional design methods across different media. Learning and Instruction, 13(2), 125–139.CrossRefGoogle Scholar
  23. Mayer, R. E., & Wittrock, M. C. (1996). Problem-solving transfer. In D.C. Berliner, & R.C. Calfee (Eds.), Handbook of educational psychology (pp. 47–62). New York: Macmillan.Google Scholar
  24. Mayring, P. (2000). Qualitative Inhatsanalyse: Grundlagen und Techniken (7th ed.). Weinheim: Deutscher Studien Verlag.Google Scholar
  25. Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: an expanded sourcebook (2nd ed.). Thousand Oaks: SAGE.Google Scholar
  26. Nds. (Niedersächsisches) Kultusministerium (2007). Kerncurriculum für das Gymnasium Schuljahrgänge 5-10: Naturwissenschaften, Biology. Hannover: Unidruck.Google Scholar
  27. Odom, A. L., & Kelly, P. V. (2001). Integrating concept mapping and the learning cycle to teach diffusion and osmosis concepts to high school biology students. Science Education, 85(6), 615–635.CrossRefGoogle Scholar
  28. Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What “ideas-about-science” should be taught in school science? A Delphi study of the expert community. Journal of Research in Science Teaching, 40(7), 692–720.CrossRefGoogle Scholar
  29. Patton, M. Q. (1990). Qualitative evaluation and research methods. Newbury Park, CA: Sage.Google Scholar
  30. PISA-Konsortium Deutschland (Ed.) (2005). PISA 2003: Der zweite Vergleich der Länder in Deutschland: was wissen und können Jugendliche? Münster: Waxmann.Google Scholar
  31. PISA-Konsortium (Ed.) (2007). PISA 2006: Die Ergebnisse der dritten internationalen Vergleichsstudie. Münster: Waxmann.Google Scholar
  32. Prain, V., & Waldrip, B. (2006). An exploratory study of teachers’ and students’ use of multi-modal representations of concepts in primary science. International Journal of Science Education, 28(15), 1843–1866.CrossRefGoogle Scholar
  33. Rogers, M. P., Abell, S., Lannin, J., Wang, C.-Y., Musikul, K., Barker, D., & Dingman, S. (2007). Effective professional development in science and mathematics education: Teachers’ and facilitators’ views. International Journal of Science and Mathematics Education, 5(3), 507–532.CrossRefGoogle Scholar
  34. Roth, W.-M. (2002). Reading graphs: Contributions to an integrative concept of literacy. Journal of Curriculum Studies, 34(1), 1–24.CrossRefGoogle Scholar
  35. Salomon, G., & Perkins, D. N. (1989). Rocky roads to transfer: rethinking mechanisms of a neglected phenomenon. Educational Psychologist, 24(2), 113–142.CrossRefGoogle Scholar
  36. Schönborn, K. J., & Anderson, T. R. (2009). A model of factors determining students’ ability to interpret external representations in biochemistry. International Journal of Science Education, 31(2), 193–232.Google Scholar
  37. Schönborn, K. J., Anderson, T. R., & Grayson, D. J. (2002). Student difficulties with the interpretation of a textbook diagram of immunoglobulin G (IgG). Biochemistry and Molecular Biology Education, 30(2), 93–97.CrossRefGoogle Scholar
  38. Schreiner, C., & Sjöberg, S. (2004). The Relevance of Science Education: Sowing the seeds of ROSE. Oslo: Acta Didactica.Google Scholar
  39. Spiro, R. J., Collins, B. P., Thota, J. J., & Feltovich, P. J. (2003). Cognitive flexibility theory: Hypermedia for complex learning, adaptive knowledge, application, and experience acceleration. Educational Technology, 43(5), 5–10.Google Scholar
  40. Taylor, N., & Corrigan, G. (2007). New South Wales primary school teachers’ perceptions of the role of ICT in the primary science curriculum–a rural and regional perspective. International Journal of Science and Mathematics Education, 5(1), 85–109.CrossRefGoogle Scholar
  41. Tsui, C.-Y., & Treagust, D. F. (2003). Genetics reasoning with multiple external representations. Research in Science Education, 33(1), 111–135.CrossRefGoogle Scholar
  42. Välijärvi, J., Linnakylä, P., Kupari, P., Reinikainen, P., & Arffman, I. (2002). The Finnish success in PISA and some reasons behind it: PISA 2000. Jyväskylä: Kirjapaino Oma Oy.Google Scholar
  43. Verhoeff, R. P., Waarlo, A. J., & Boersma, K. T. (2008). Systems modelling and the development of coherent understanding of cell biology. International Journal of Science Education, 30(4), 543–568.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  1. 1.Didaktik der Biologie, Zentrum für empirische Unterrichts- und Schulforschung (ZeUS), Biologische Fakultät, Albrecht-von-Haller-Institut für PflanzenwissenschaftenGeorg-August-Universität GöttingenGöttingenGermany
  2. 2.Division of Visual Information Technology and Applications (VITA), Department of Science and Technology (ITN)Linköping UniversityNorrköpingSweden

Personalised recommendations