THE SYSTEM OF COORDINATES AS AN OBSTACLE IN UNDERSTANDING THE CONCEPT OF DIMENSION

  • Constantine Skordoulis
  • Theodore Vitsas
  • Vassilis Dafermos
  • Eugenia Koleza
Article

Abstract

The concept of dimension, one of the most fundamental ideas in mathematics, is firmly rooted in the basis of the school geometry in such a way that mathematics teachers rarely feel the need to mention anything about it. However, the concept of dimension is far from being fully understood by students, even at the college level. In this paper, we examine whether the Cartesian x-y plane is responsible for student difficulty in estimating the value of the dimension of an object, or is it only students misconceptions about dimension that lead them to a false estimation of the value of the dimension of various objects. A second question discussed in this paper examines whether the system of coordinates acts as an epistemological obstacle or whether it has only a didactical character.

Key words

dimension mathematics education preservice teachers science education teacher training 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamopoulos, L., Viskadourakis, V., Gavalas, D., Polyzos, G., & Sverkos, A. (2001). Mathematics of Positive and Technological Orientation, class B. OEDB. Athens.Google Scholar
  2. Alexandroff, P. (1932). Dimensions theorie. Mathematische Annalen, 106, 161–238.CrossRefGoogle Scholar
  3. Alexandroff, P. (1961). Elementary Concepts of Topology, Translated by Alan E. Farley, Dover Publications, Inc. New York, (Original title: Ein fachste Grundbegriffe der Topologie, Publ. Julius Springer, 1932).Google Scholar
  4. Bachelard, G. (1938). La formation de l’esprit scientifique. Paris: Librairie J. Vrin.Google Scholar
  5. Boyer, C. B. & Merzbach, U. C. (1989). A history of mathematics. 2 New York: John Wiley & Sons.Google Scholar
  6. Brousseau, G. (1976). La problématique et l’enseignement des mathématiques, XXVIIIème Rencontre de la C.I.E.A.E.M., Louvain la Neuve.Google Scholar
  7. Brousseau, G. (1983). Les obstacles epistemologiques et les problemes mathematiques. Recherches en Didactique des Mathematiques, 4(2), 165–198.Google Scholar
  8. Brousseau, G. (1997). Theory of didactical situations in mathematics. In N. Balacheff, M. Cooper, R. Sutherland, & V. Warfield, (Eds. and Trans.), Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
  9. Devaney, R. L. (1995). Fractal dimension, playing the chaos game in the class, http://math.edu/DYSYS/chaos-game/node6.html, ETD 1995.
  10. Devlin, K. (1994). Mathematics: The science of patterns. New York: Scientific American Library.Google Scholar
  11. Duroux, A. (1982). La valeur absolue: difficulté majeures pour une notion mineure, DEA de Didactique des Mathématiques, Université de Bordeaux. Published in Petit x, no 3, 1983, Ed. IREM de Grenoble.Google Scholar
  12. Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Dordrecht: NL: Reidel.Google Scholar
  13. Mandelbrot, B. (1982). The fractal geometry of nature. New York: W. H. Freeman & Co.Google Scholar
  14. NCTM (1991). Fractals for the classroom. Strategic Activities Vol.1 Springer Verlag.Google Scholar
  15. Pears, A. R. (1975). Dimension theory of general spaces. Cambridge University Press.Google Scholar
  16. Vitsas, T. & Koleza, E. (2000). Student’s misconceptions on the concept of dimension, Proceedings of the 2nd Mediterranean Conference on Mathematics Education. (pp. 108–119) Nicosia: Cyprus Mathematic Society- Cyprus Pedagogical Institute.Google Scholar
  17. Weisstein, E. (2006). Restricted three body problem. www.wolframscience.com/physics/RestrictedThree-BodyProblem.
  18. Wolfram, S. (2002). A new kind of Science. The three body problem, p. 972. www.wolframscience.com/reference/notes/972d.
  19. Zervos, P. S. (1972). On the development of mathematical intuition, on the genesis of geometry, further remarks. Tensor (NS), 26, 398–467.Google Scholar

Copyright information

© National Science Council, Taiwan 2008

Authors and Affiliations

  • Constantine Skordoulis
    • 1
  • Theodore Vitsas
    • 1
  • Vassilis Dafermos
    • 2
  • Eugenia Koleza
    • 3
  1. 1.Department of EducationUniversity of AthensAthensGreece
  2. 2.Department of Political ScienceUniversity of CreteRethymnonGreece
  3. 3.Department of EducationUniversity of IoanninaIoanninaGreece

Personalised recommendations