Motivating Constraints of a Pedagogy-Embedded Computer Algebra System

Article
  • 92 Downloads

Abstract

The constraints of a computer algebra system (CAS) generally induce limitations on its usage. Via the pedagogical features implemented in such a system, “motivating constraints” can appear, encouraging advanced theoretical learning, providing a broader mathematical knowledge and more profound mathematical understanding. We discuss this issue, together with two examples from Calculus, which show an important feature of an instrumentation process.

Key words

computer algebra system constraints instrumentation learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7(3), 245–274.CrossRefGoogle Scholar
  2. Balacheff, N. (1994). La transposition informatique: Note sur un nouveau problème sur la didactique. In M. Artigue et al. (Eds.), Vingt ans de didactique en France (pp. 364–370). Grenoble: La Pensée Sauvage.Google Scholar
  3. Böhm, J., Rich, A., & Dana-Picard, T. (2005). About stepwise simplification. Derive Newsletter, 57, 36–38.Google Scholar
  4. Bosch, M., & Chevallard, Y. (1999). La sensibilité de l’activité mathématique aux ostensifs. Objet d’étude et problématique. Recherche en Didactique des Mathématiques, 19(1), 77–124.Google Scholar
  5. Dana-Picard, T. (2004). Explicit closed forms for parametric integrals. International Journal of Mathematical Education in Science and Technology, 35(3), 456–467.CrossRefGoogle Scholar
  6. Dana-Picard, T. (2005a). Technology as a bypass for a lack of theoretical knowledge. International Journal of Technology in Mathematics Education, 11(3), 101–110.Google Scholar
  7. Dana-Picard, T. (2005b). Parametric integrals and symmetries of functions. Mathematics and Computers Education, Winter 2005, 5–12.Google Scholar
  8. Garry, T. (2003). Computing, conjecturing, and confirming with a CAS tool. In J. Fey et al. (Eds.), Computer algebra systems in secondary school mathematics education. Reston, VA: NCTM, pp. 137–150.Google Scholar
  9. Guin, D., & Trouche, T. (1999). The complex process of converting tools into mathematical instruments: The case of calculators. International Journal of Computers for Mathematical Learning, 3, 195–227.CrossRefGoogle Scholar
  10. Herget, W., Heugl, H., Kutzler, B., & Lehmann, E. (2000). Indispensable manual calculation skills in a CAS environment. http://b.kutzler.com/article/art_indi/art_indi.pdf. Accessed 27 June 2006.
  11. Lagrange, J. B. (1999). Techniques and concepts in pre-calculus using CAS: A two year classroom experiment with the TI-92. International Journal of Computer Algebra in Mathematics Education, 6(2), 43–65.Google Scholar
  12. Lagrange, J. B. (2000). L'intégration d'instruments informatiques dans l'enseignement: Une approche par les techniques. Educational Studies in Mathematics, 43, 1–30.CrossRefGoogle Scholar
  13. Meyer, J., & Dana-Picard, T. (1997). Problem solving in mathematics and physics. Proceedings of the 2nd Conference on Teacher Education, Mofet Institute, Tel-Aviv.Google Scholar
  14. Noss, R., & Hoyles, C. (1996). Windows on mathematical meaning. Dordrecht: KluwerGoogle Scholar
  15. Pierce, R. (2001). Algebraic insight for an intelligent partnership with CAS. Proceedings of the 12th ICMI Conference, Melbourne, Australia, 732–739.Google Scholar
  16. Sloane, N. J. A. (2006). The on-line encyclopedia of integer sequences. http://www.research.att.com/cgi-bin/access.cgi/as/njas. Accessed 27 June 2006.
  17. Steiner, J., & Dana-Picard, T. (2004). Teaching mathematical integration: Human computational skills versus computer algebra. International Journal of Mathematical Education in Science and Technology, 35(2), 249–258.CrossRefGoogle Scholar
  18. Trouche, L. (2000). La parabole du gaucher et de la casserole à bec verseur: étude des processus d'apprentissages dans un environnement de calculatrices symboliques, Educational Studies in Mathematics, 41(2000), 239–264.Google Scholar
  19. Trouche, L. (2004a). Environnements informatisés et Mathématiques: Quels usages pour quels apprentissages? Educational Studies in Mathematics, 55(2004), 181–197.CrossRefGoogle Scholar
  20. Trouche, L. (2004b). Managing the complexity of human/machine interactions in computerized learning environments: Guiding students' command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning, 9, 281–307.CrossRefGoogle Scholar

Copyright information

© National Science Council, Taiwan 2006

Authors and Affiliations

  1. 1.Applied MathematicsJerusalem College of TechnologyJerusalemIsrael

Personalised recommendations