Numerical Modeling of an Injection-Seeded Terahertz-Wave Parametric Generator

  • Yu Qin
  • Zeyu Li
  • Qiang Yan
  • Xun Zhou
  • Mingrui Zou
  • Weipeng KongEmail author


We have constructed a numerical model for injection-seeded terahertz-wave parametric generators in which the pump depletion, the duration of the pump pulse, as well as the spatial modes of the pump and seed beams are taken into consideration. Compared with other models which only provide the parametric gain under the assumption of low pump depletion, our model can make the predictions on the energy as well as spatial and temporal profiles of the generated terahertz-wave. Besides, the appropriate value of nonlinear coefficient of MgO:LiNbO3 in terahertz regime is difficult to find in the published works. To solve this problem, Miller’s rule is applied for the wavelength scaling of the nonlinear coefficient during calculation. We present a detailed description of the model and show that its predictions agree well with the reported experimental results. The presented model allows the performance to be estimated when designing an injection-seeded terahertz-wave parametric generator.


Parametric terahertz source Terahertz generation Nonlinear optics 


Funding Information

This work is financially supported by the National Natural Science Foundation of China (11804320).


  1. 1.
    K. Kawase, J. Shikata, K. Imai, and H. Ito, Transform-limited, narrowlinewidth, terahertz-wave parametric generator, Appl. Phys. Lett. 78 (2001), 2819–2821.CrossRefGoogle Scholar
  2. 2.
    S. I. Hayashi, H. Sakai, T. Taira, H. Minamide, and K. Kawase, High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:Yag laser, Opt. Express 20 (2012), 2881– 2886.CrossRefGoogle Scholar
  3. 3.
    K. Murate, S. I. Hayashi, and K. Kawase, Expansion of the tuning range of injection-seeded terahertz-wave parametric generator up to 5 THz, Appl. Phys. Express 9 (2016), 082401.CrossRefGoogle Scholar
  4. 4.
    K. Murate, S. I. Hayashi, and K. Kawase, Multiwavelength terahertz-wave parametric generator for one-pulse spectroscopy, Appl. Phys. Express 10 (2017), 032401.CrossRefGoogle Scholar
  5. 5.
    Y. Moriguchi, Y. Tokizane, Y. Takida, K. Nawata, T. Eno, S. Nagano, and H. Minamide, High-average and high-peak output-power terahertz-wave generation by optical parametric down-conversion in MgO:LiNbO 3, Appl. Phys. Lett. 113 (2018), 121103.CrossRefGoogle Scholar
  6. 6.
    H. Minamide, S. I. Hayashi, K. Nawata, T. Taira, J. Shikata, and K. Kawase, Kilowatt-peak terahertz-wave generation and sub-femtojoule terahertz-wave pulse detection based on nonlinear optical wavelength-conversion at room temperature, J. Infrared Millim. Terahertz Waves 35 (2014), 25–37.CrossRefGoogle Scholar
  7. 7.
    M. Kato, S. R. Tripathi, K. Murate, K. Imayama, and K. Kawase, Non-destructive drug inspection in covering materials using a terahertz spectral imaging system with injection-seeded terahertz parametric generation and detection, Opt. Express 24 (2016), 6425–6432.Google Scholar
  8. 8.
    S. R. Tripathi, Y. Sugiyama, K. Murate, K. Imayama, and K. Kawase, Terahertz wave three-dimensional computed tomography based on injection-seeded terahertz wave parametric emitter and detector, Opt. Express 24 (2016), 6433–6440.CrossRefGoogle Scholar
  9. 9.
    K. Murate and K. Kawase, Perspective: Terahertz wave parametric generator and its applications, J. Appl. Phys. 124 (2018), 160901.CrossRefGoogle Scholar
  10. 10.
    C. Henry and C. Garrett, Theory of parametric gain near a lattice resonance, Phys. Rev. 171 (1968), 1058–1064.CrossRefGoogle Scholar
  11. 11.
    S. S. Sussman, Tunable light scattering from transverse optical modes in lithium niobate, M. L. Report, Vol. 1851, Stanford University, CA Microwave Laboratory, 1970.Google Scholar
  12. 12.
    U. Schwarz and M. Maier, Frequency dependence of phonon-polariton damping in lithium niobate, Phys. Rev. B 53 (1996), 5074–5077.CrossRefGoogle Scholar
  13. 13.
    U. Schwarz and M. Maier, Damping mechanisms of phonon polaritons, exploited by stimulated Raman gain measurements, Phys. Rev. B 58 (1998), 766–775.CrossRefGoogle Scholar
  14. 14.
    Y. Takida, J. Shikata, K. Nawata, Y. Tokizane, Z. Han, M. Koyama, T. Notake, S. Hayashi, and H. Minamide, Terahertz-wave parametric gain of stimulated polariton scattering, Phys. Rev. A 93 (2016), 043836.Google Scholar
  15. 15.
    D. J. Spence, H. M. Pask, and A. J. Lee, Analytic theory for lasers based on stimulated polariton scattering, J. Opt. Soc. Am. B 36 (2019), 1706–1715.CrossRefGoogle Scholar
  16. 16.
    J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, Tunable Terahertz-wave parametric oscillators using LiNbO 3and MgO:LiNbO 3crystals, IEEE Trans. Microw. Theory Tech. 48 (2000), 653–661.Google Scholar
  17. 17.
    X. Wu, C. Zhou, W. R. Huang, F. Ahr, and F. X. Kärtner, Temperature dependent refractive index and absorption coefficient of congruent lithium niobate crystals in the terahertz range, Opt Express 23 (2015), 29729–29737.CrossRefGoogle Scholar
  18. 18.
    M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, and L. Pálfalvi, Measurement of refractive index and absorption coefficient of congruent and sStoichiometric lithium niobate in the terahertz range, J. Infrared Millim. Terahertz Waves 36 (2015), 1203–1209.CrossRefGoogle Scholar
  19. 19.
    D. E. Zelmon, D. L. Small, and D. Jundt, Infrared corrected sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide–doped lithium niobate, J. Opt. Soc. Am. B 14 (1997), 3319–3322.CrossRefGoogle Scholar
  20. 20.
    K. Kawase, J. Shikata, and H. Ito, Terahertz wave parametric source, J. Phys. D: Appl. Phys. 35 (2001), R1–R14.CrossRefGoogle Scholar
  21. 21.
    Y. Jiang, D. Li, Y. Ding, and I. B. Zotova, Terahertz generation based on parametric conversion: from saturation of conversion efficiency to back conversion, Opt. Lett. 36 (2011), 1608–1610.CrossRefGoogle Scholar
  22. 22.
    S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, Ultrabright continuously tunable terahertz-wave generation at room temperature, Sci. Rep. 4 (2014), 5045.Google Scholar
  23. 23.
    R. C. Miller, Optical second harmonic generation in piezoelectric crystals, Appl. Phys. Lett. 5 (1964), 17–19.CrossRefGoogle Scholar
  24. 24.
    I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, Absolute scale of second-order nonlinear-optical coefficients, J. Opt. Soc. Am. B 14 (1997), 2269–2294.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Yu Qin
    • 1
    • 2
  • Zeyu Li
    • 1
    • 2
  • Qiang Yan
    • 1
    • 2
  • Xun Zhou
    • 1
    • 2
  • Mingrui Zou
    • 1
    • 2
  • Weipeng Kong
    • 1
    • 2
    Email author
  1. 1.Research Center of Laser Fusion, CAEPMianyangChina
  2. 2.Microsystem & Terahertz Reseach Center, CAEPChengduChina

Personalised recommendations