Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Temperature Dependence of THz Conductivity in Polyaniline Emeraldine Salt-Polyethylene Pellets

  • 60 Accesses

Abstract

Using terahertz time-domain spectroscopy, the frequency-dependent conductivities of polyaniline emeraldine salt-polyethylene (PAni-PE) pellets were measured at different mass concentrations. THz conductivities were compared to the behavior of DC conductivities measured using impedance spectroscopy. The DC conductivity behavior with mass concentration showed a low percolation threshold. The frequency-dependent behavior in the THz region follows the Mott-Davis behavior which shows stronger correlation at higher PAni concentration. At the same time, the conductivity increases exponentially with increasing PAni concentration over the frequency range studied without an apparent percolation threshold. The mechanisms in the two regions studied suggest that there is more dominant localization in the THz regime in contrast with a more dominant percolative transport in the Hz-MHz region. Temperature-dependent measurements showed a decreasing value of parameter S with increasing temperature consistent with a correlated barrier hopping model. Lastly, the parameter S increases in magnitude with a decreasing amount of PAni in the composites reflective of varying conducting and nonconducting compositions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    H. B. Brom, K. L. J. Adriaanse, P. A. A. Teunissen, J. A. Reedjik, M. A. J. Michels, J. C. M. Brokken-Zijp, Synthetic Metals84, 929–930 (1997).

  2. 2.

    Z. M. Elimat, A. M. Zihlif, G. Ragosta, J. Phys. D: Appl. Phys.41 165408 (2008).

  3. 3.

    W. R. Romanko, M. A. Ratner, S. H. Carr, Solid State Communications75, 25 (1990).

  4. 4.

    Y.-J. Li, M. Xu, J.-Q. Feng, Z.-M. Dang, Appl. Phys. Lett.89, 072902 (2006).

  5. 5.

    B. Sixou, J. P. Travers, C. Barthet, M. Guglielmi, Phys. Rev. B56, 8 (1997).

  6. 6.

    P. Savi, M. Giorcelli, S. Quaranta, Appl. Sci.9, 851 (2019).

  7. 7.

    A. V. Okotrub, V. V. Kubarev, M. A. Kanygin, O. V. Sedelnikova, L. G. Bulusheva, Phys. Status Solidi B248, 2568 (2011).

  8. 8.

    T. J. Coutts, Thin Solid Films38, 313 (1976).

  9. 9.

    X. L. Chen, M. W. Ma, Y. F. Song, T. Ji, S. W. Wu, Z. Y. Zhang, Z. Y. Zhu, Spectroscopy and Spectral Analysis31, 906 (2011).

  10. 10.

    A. Panahpour, H. Latif, Optics Communications283, 4754 (2010).

  11. 11.

    H. Tao, J. J. Amsden, A. C. Strikwerda, K. B. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, F. G. Omenetto, Advanced Materials22, 3527 (2012).

  12. 12.

    G. Ya. Slepyan, M. V. Shuba, S. A. Maksimenko, C. Thomsen, A. Lakhtakia, Phys. Rev. B81, 205423 (2010).

  13. 13.

    C. Joerdens, S. Wietzke, M. Scheller M. Koch, Polymer Testing29, 209 (2010).

  14. 14.

    C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, V. Reisecker, M. Koch, Composites Science and Technology70, 472 (2010).

  15. 15.

    D. G. Cooke, Y. Lek Jun, F. C. Krebs, C. Frederik, Y. M. Lam, P. U. Jepsen, Ultrafast Phenomena in Semiconductors and Nanostructure Materials XIV Book Series: Proceedings of SPIE-The International Society for Optical Engineering 7600, H1–9 (2010).

  16. 16.

    S. Zhu, C. Xing, F. Wu, X. Zuo, Y. Zhang, C. Yu, M. Chen, W. Li, Q. Li, L. Liu, Carbon145, 259 (2019).

  17. 17.

    L. Xing, H.-L. Cui, Z. X. Zhou, J. Bai, C. Du, IEEE Access7, 41737 (2019).

  18. 18.

    I. Amenabar, F. Lopez, A. Mendikute, J. Infrared Milli. Terahz. Waves34, 152 (2013).

  19. 19.

    D. Zhang, Polymer Testing26, 9 (2007).

  20. 20.

    P. Saini, V. Choudhary, K. N. Sood and S. K. Dhawan, J. Appl. Polymer Science113, 3146 (2009).

  21. 21.

    X. S. Du, M. Xiao, Y. Z. Meng, Europ. Polymer J.40, 1489 (2004).

  22. 22.

    X. Wu, S. Qi, J. He, B. Chen, G. Duan, J. Polymer Research17, 751 (2010).

  23. 23.

    A. K. G. Tapia and K. Tominaga, Chem. Phys. Lett.598, 39 (2014).

  24. 24.

    A. K. G. Tapia and K. Tominaga, J. Infrared Milli. Terahz. Waves38, 885 (2017).

  25. 25.

    R. Patil, A. S. Roy, K. R. Anilkumar, K. M. Jadhava, and S. Ekhelikar, Composites Part B: Engineering43, 3406–3411 (2012).

  26. 26.

    R.K.Gupta and R.A.Singh, Journal of Non-Crystalline Solids351, 2022–2028 (2005).

  27. 27.

    Y. T. Ravikiran, S. Kotresh, S. C. Vijaya Kumari, K. C. Sajjan, B. S. Khened and S. Thomas, Cellulose Chem. Technol.49, 21–28 (2015).

  28. 28.

    N. F. Mott, E. A. Davis, Electronic Processes Non-Crystalline Materials, Oxford University Press, Oxford, 1979.

  29. 29.

    R. Singh, V. Arora, R. P. Tandon, A. Mansingh, S. Chandra, Synthetic Metals104, 137 (1999).

  30. 30.

    F. Zuo, M. Angelopoulos, A. G MacDiarmid, A. J. Epstein, Phys. Rev. B39, 3570 (1989).

  31. 31.

    E. Nguema, V. Vigneras, J. L. Miane, P. Mounaix, Europ. Polymer J.44, 124 (2008).

  32. 32.

    H. H. S. Javadi, K. R. Cromack, A. G. MacDiarmid, A. J. Epstein, Phys. Rev. B39, 6 (1989).

  33. 33.

    T. Unuma, O. Kobayashi, I. F. A. Hamdany, V. Kumar, J. J. Saarinen, Cellulose26, 3247 (2019).

  34. 34.

    S. Barrau, P. Demont, A. Peigney, C. Laurent, C. Lacabanne, Macromolecules36, 5187 (2003).

  35. 35.

    L. J. Adriaanse, J. A. Reedijk, P. A. A. Teunissen, H. B. Brom, M. A. J. Michels, J. C. M. Brokken-Zijp, Phys. Rev. Lett.78, 1755 (1997).

Download references

Acknowledgments

AKGT would like to thank the Hitachi Scholarship Foundation for the support. Also, the authors extend their gratitude to Prof. Tomoyuki Mochida of Kobe University for the impedance analyzer.

Funding

This work was financially supported by the Hitachi Scholarship Foundation and partially supported by the Bilateral Joint Research Project (FY 2018-2019) funded by the Japan Society for the Promotion of Science and the Department of Science and Technology, Philippines.

Author information

Correspondence to Keisuke Tominaga.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tapia, A.K.G., Tominaga, K. Temperature Dependence of THz Conductivity in Polyaniline Emeraldine Salt-Polyethylene Pellets. J Infrared Milli Terahz Waves 41, 258–264 (2020). https://doi.org/10.1007/s10762-019-00650-9

Download citation

Keywords

  • Terahertz time-domain spectroscopy
  • Polyaniline
  • Composite
  • Polyethylene
  • Conductivity