Advertisement

Measurement and Analysis of Noise Spectra in Terahertz Wave Detection Utilizing Low-Temperature-Grown GaAs Photoconductive Antenna

  • Masahiro Nitta
  • Ryota Nakamura
  • Yutaka KadoyaEmail author
Article
  • 52 Downloads

Abstract

Noise power spectral density (NPSD) in time domain terahertz (THz) wave detection systems utilizing GaAs-based photoconductive antennas (PCAs) was investigated quantitatively. The contributions of the PCA noise and the amplifier noises at the amplifier output depend strongly on the resistance of the PCA, the circuit parameters, and the frequency. The PCA has two types of noise: one can be modeled by the Johnson-Nyquist (thermal) noise for the PCA resistance, while the other has an NPSD inversely proportional to the frequency with its intensity dependent on the properties of the GaAs and the metallization. At a high frequency range ~ 100 kHz, voltage-type amplifier noise could appear if the cable capacitance between the PCA and the amplifier is large. As a result, a low-noise range tends to appear in the intermediate frequency range. In comparison with the PCAs with Ti/Au metallization, the PCAs with Pd/Ge/Ti/Au having lower contact resistance lead to lager influence of the Johnson-Nyquist noise at the output.

Keywords

Photoconductive antenna Low-temperature-grown GaAs Noise spectra 1/f noise Thermal noise 

Notes

Acknowledgments

Authors acknowledge Dr. Yoriko Tominaga for the support in molecular beam epitaxy growth.

Funding Information

This work was supported by JSPS KAKENHI Grant Number JP18K04980.

References

  1. 1.
    O. M. Abdulmunem, N. Born, M. Mikulics, J. C. Balzer, M. Koch, and S. Preu, Micro. Opt. Tech. Lett., 59, 468 (2017).CrossRefGoogle Scholar
  2. 2.
    B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. B. Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, Nano Lett., 12, 6255 (2012).CrossRefGoogle Scholar
  3. 3.
    C.W. Berry, N. Wang, M.R. Hashemi, M. Unlu, and M. Jarrahi, Nat. Comm., 4, 1622 (2013).CrossRefGoogle Scholar
  4. 4.
    A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, Nano Lett., 15, 8306 (2015).CrossRefGoogle Scholar
  5. 5.
    N. T. Yardimci and M. Jarrahi, Sci. Rep., 7, 42667 (2017).CrossRefGoogle Scholar
  6. 6.
    N. T. Yardimci, D. Turan, S. Cakmakyapan, and M. Jarrahi, Appl. Phys. Lett., 113, 251102 (2018).CrossRefGoogle Scholar
  7. 7.
    T. Siday, P. P. Vabishchevich, L. Hale, C. T. Harris, T. S. Luk, J. L. Reno, I. Brener, and O. Mitrofanov, Nano Lett., 19, 2888 (2019).CrossRefGoogle Scholar
  8. 8.
    L. Duvillaret, F. Garet, and J.-L. Coutaz, J. Opt. Soc. Am. B, 17, 452 (2000).CrossRefGoogle Scholar
  9. 9.
    M. Takeda, S. R. Tripathi, M. Aoki, and N. Hiromoto, Adv. Mat. Res., 222, 213 (2011).Google Scholar
  10. 10.
    N. Wang and M. Jarrahi, J. Infrared Milli. Terahz. Waves, 34, 519 (2013).CrossRefGoogle Scholar
  11. 11.
    M. van Exter and D. R. Grischkowsky, IEEE Trans. Microwave Theory and Tech., 38, 1684 (1990).CrossRefGoogle Scholar
  12. 12.
    T. Kataoka, K. Kajikawa, J. Kitagawa, Y. Kadoya, and Y. Takemura, Appl. Phys. Lett., 97, 201110 (2010).CrossRefGoogle Scholar
  13. 13.
    R. J. B. Dietz, B. Globisch, H. Roehle, D. Stanze, T. Göbel, and M. Schell, Opt. Express, 22, 19411 (2014).CrossRefGoogle Scholar
  14. 14.
    B. Globisch, R. J. B. Dietz, S. Nellen, T. Gobel, and M. Schell, AIP ADVANCES, 6, 125011 (2016).CrossRefGoogle Scholar
  15. 15.
    R. B. Kohlhaas, S. Breuer, S. Nellen, L. Liebermeister, M. Schell, M. P. Semtsiv, W. T. Masselink, and B. Globisch, Appl. Phys. Lett., 114, 221103 (2019).CrossRefGoogle Scholar
  16. 16.
    I. S. Gregory, C. M. Tey, A. G. Cullis, M. J. Evans, H. E. Beere and I. Farrer, Phys. Rev. B, 73, 195201 (2006).CrossRefGoogle Scholar
  17. 17.
    M. P. Patkar, T. P. Chin, J. M. Woodall, M. S. Lundstrom, and M. R. Melloch, Appl. Phys. Lett., 66, 1412 (1995).CrossRefGoogle Scholar
  18. 18.
    N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H.-W. Hübers, and M. Koch, Opt. Express, 16, 19695 (2008).CrossRefGoogle Scholar
  19. 19.
    J. S. Kwak, H. N. Kim, and H. K. Baik, J.-L. Lee, H. Kim, and H. M. Park, S. K. Noh, Appl. Phys. Lett., 67, 2465 (1995).CrossRefGoogle Scholar
  20. 20.
    M. Mikulics, M. Marso, S. Wu, A. Fox, M. Lepsa, D. Grützmacher, R. Sobolewski, and P. Kordoš, IEEE Photon. Tech. Lett., 20, 1054 (2008).CrossRefGoogle Scholar
  21. 21.
    M. Yamanishi, T. Hirohata, S. Hayashi, K. Fujita, and K. Tanaka, J. Appl. Phys., 116, 183106 (2014).CrossRefGoogle Scholar
  22. 22.
    A. Suda and N. Otsuka, Surf. Sci., 458, 162 (2000).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Graduate School of Advanced Sciences of MatterHiroshima UniversityHigashihiroshimaJapan

Personalised recommendations