Skip to main content
Log in

Terahertz Analysis of Phthalocyanine Pigments

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

A Publisher Correction to this article was published on 22 September 2022

This article has been updated

Abstract

In situ, non-invasive and non-destructive analysis of important artworks and cultural pieces is largely important in art conservation science. Terahertz time-domain spectroscopy and imaging delivers these requirements but lacks a materials database with fundamental understanding of salient pigments, binders and substrates. In this study, the most important synthetic pigments, the copper phthalocyanines, are investigated through terahertz time-domain spectroscopy. The terahertz spectrum reveals a series of characteristic modes in a 0.1–3-THz range across 14 pigment samples. Identification and distinction of copper phthalocyanines’ α, β and 𝜖 crystal polymorphs is demonstrated. This uniqueness within the terahertz regime is extended to two halogenated variants and a metal-free form. This invites the use of THz spectroscopy in investigation of contemporary artworks, post 1935, containing these pigments and promotes applications such as identifying fraudulent works of art.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. K. Fukunaga, THz Technology Applied to Cultural Heritage in Practice (Springer, Tokyo, 2016).

  2. J.B. Jackson, J. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, K. Fukunaga, IEEE Transactions on Terahertz Science and Technology 1(1) (2011).

  3. K. Fukunaga, M. Piccolo, Appl. Phys. A 100, 591 (2010).

  4. A.D. Squires, M.T. Kelly, R.A. Lewis, Journal of Infrared, Millimeter and Terahertz Waves 38, 314 (2016).

  5. A.D. Squires, R.A. Lewis, A.J. Zaczek, T.M. Korter, Journal of Physical Chemistry A 121, 3423 (2017).

  6. Z. Zhang, C. Zhang, Y. Yang, in 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (2016).

  7. E. Abraham, A. Younus, J.C. Delagnes, P. Mounaix, Appl. Phys. A 100, 585 (2010).

  8. M. Piccolo, K. Fukunaga, J. Labaune, Journal of Cultural Heritage 16, 73 (2015).

  9. K. Fukunaga, I. Hosako, Comptes Rendus Physique 11, 519 (2010).

  10. C.L.K. Dandolo, A. Cosentino, P.U. Jepsen, Studies in Conservation 60(159-166) (2015).

  11. J.B. Jackson, M. Mourou, J.F. Whitaker, I.N. Duling, S.L. Williamson, M. Menu, G.A. Mourou, Optics Communications 281, 527 (2008).

  12. R.M. Groves, B. Pradarutti, E. Kouloumpi, W. Osten, G. Notni, NDT&E International 42, 543 (2009).

  13. G. Pastorelli, T. Trafela, P.F. Taday, A. Portieri, D. Lowe, K. Fukunaga, M. Strlic, Analytical and Bioanalytical Chemistry 403(5), 1405 (2012).

  14. K. Krugener, M. Schwerdtfeger, S.F. Busch, A. Soltani, E. Castro-Camus, M. Koch, W. Viol, Scientific Reports 5 (2015).

  15. G.C. Walker, J.B. Jackson, D. Giovannacci, J.W. Bowen, B. Delandes, J. Labaune, G. Mourou, M. Menu, V. Detalle, SPIE Proceedings: The International Society for Optical Engineering 8790 (2013).

  16. H.M. Smith, High Performance Pigments (Weinheim Wiley-VCH, 2002).

  17. Y. Zhang, X. Cai, Y. Bian, J. Jiang, Organic Semiconductors of Phthalocyanine Compounds for Field Effect Transistors (FETs) (Springer, 2009).

  18. C.G. Claessens, U. Hahn, T. Torres, Phthalocyanines: From outstanding electronic properties to emerging applications (Wiley, 2008).

  19. C.V. Kumar, G. Sfyri, D. Raptis, E. Stathatos, P. Lianos, RSC Advances 5(5), 3786 (2015).

  20. K. Ohta, S. Tokonami, K. Takahashi, Y. Tamura, H. Yamada, K. Tominaga, The Journal of Physical Chemistry B 121(43), 10157 (2017).

  21. J.S. Melinger, P. Lane, O. Esenturk, E. Heilweil, 35th IEEE Photovoltaic Specialists Conference pp. 1616–1620 (2010).

  22. P.A. Lane, P.D. Cunningham, J.S. Melinger, G.P. Kushto, O. Esenturk, Physical Review Letters 108(7) (2012).

  23. P.A. Lane, P.D. Cunningham, J.S. Melinger, E.J. Heilweil, Proceedings of SPIE, The International Society for Optical Engineering 9184 (2014).

  24. P.D. Cunningham, P.A. Lane, J.S. Melinger, O. Esenturk, E.J. Heilweil, in Proceedings of the SPIE, vol. 9856 (2016), vol. 9856.

  25. O. Esenturk, J.S. Melinger, P.A. Lane, E.J. Heilweil, Journal of Physical Chemistry. C 113(43), 18842 (2009).

  26. W. Wu, Journal of Physics: Condensed Matter 26(29), 296002 (2014).

  27. H.K. Yoo, C. Kang, Y. Yoon, H. Lee, J.W. Lee, Applied Physics Letters 99(6) (2011).

  28. T. He, B. Zhang, J. Shen, M. Zang, T. Chen, Y. Hu, Y. Hou, Applied Physics Letters 106, 053303 (2015).

  29. T. Matsui, R. Takagi, K. Takano, M. Hangyo, Optics Letters 38(22), 4632 (2013).

  30. H.K. Yoo, C. Kang, J.W. Lee, C.S. Kee, Y. Yoon, H. Lee, K. Lee, Applied Physics Express 5(7), 072402 (2012).

  31. H.K. Yoo, S.G. Lee, C. Kang, J.W. Lee, C.S. Kee, in 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (2014).

  32. H.K. Yoo, C.S. Kee, C. Kang, I.W. Hwang, J.W. Lee, Journal of Nanophotonics 7(1) (2013).

  33. H.K. Yoo, S.G. Lee, C. Kang, C.S. Kee, J.W. Lee, Applied Physics Letters 103(15) (2013).

  34. K. Mizoguchi, S. Fujita, M. Nakayama, Appl. Phys. A 78(4), 461 (2004).

  35. J.E. Mates, I.S. Bayer, M. Salerno, P.J. Carroll, Z. Jiang, Carbon (New York) 87, 163 (2015).

  36. N.B. McKeown, Phthalocyanine Materials: Synthesis, Structure and Function (Cambridge University Press, 1998).

  37. G. Löbbert, Phthalocyanines (Wiley, 2000).

  38. K. Hunger, Review of Progress in Coloration and Related Topics 29, 71 (1999).

  39. C.J. Brown, J. Chem. Soc. A pp. 2488–2493 (1968).

  40. R. Prabakaran, R. Kesavamoorthy, G.L.N. Reddy, F.P. Xavier, Physica Status Solidi 229(3), 1175 (2002).

  41. J. Janczak, R. Kubiak, Journal of Alloys and Compounds 190, 121 (1992).

  42. K. Kadish, R. Guilard, K.M. Smith, The Porphyrin Handbook: Applications of Phthalocyanines (Academic Press, 2012).

  43. R. Kubiak, J. Janczak, Journal of Alloys and Compounds 190, 117 (1992).

  44. S.Q. Lomax, J. Coat. Technol. Res. 7(3), 331 (2010).

  45. C. Defeyt, P. Vandenabeele, B. Gilbert, J. Van Pevenage, R. Cloots, D. Strivay, Journal of Raman Spectroscopy 43, 1772 (2012).

Download references

Acknowledgements

We would like to acknowledge Saroj Bhattacharyya and the University of New South Wales for assistance in acquiring PXRD of the pigment samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Squires.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Squires, A.D., Lewis, R.A. Terahertz Analysis of Phthalocyanine Pigments. J Infrared Milli Terahz Waves 40, 738–751 (2019). https://doi.org/10.1007/s10762-019-00599-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-019-00599-9

Keywords

Navigation