Advertisement

In vivo Non-invasive Diagnosis of Glucose Level in Type-2 Diabetes Mouse by THz Near-Field Imaging

  • Hua ChenEmail author
  • Yu Zhang
  • Xiao Li
  • Xiaofeng Chen
  • Shihua Ma
  • Xiumei Wu
  • Tianzhu Qiu
  • Weifeng Zhang
Article
  • 86 Downloads

Abstract

Based on a room-temperature-operated THz fiber-scanning near-field imaging system, we demonstrate in vivo the capability of THz imaging to directly diagnose blood glucose level non-invasively in a type-2 diabetes mouse. High THz absorption induced by higher glucose level facilitates the distinction of blood in mouse ear’s capillary from the surrounding tissues and the THz images reflect a high sensitivity to the change of glucose level in blood. The THz near-field imaging system presented here can have important potential applications in clinical non-invasive human diabetes examination.

Keywords

THz Near-field imaging Diabetes mouse Blood Glucose level 

Notes

Acknowledgments

This work was supported by a Joint Research Project by Southeast University and Nanjing Medical University No. 3207027381 and China Postdoctoral Science Foundation No. 2016M601692.

References

  1. 1.
    S. Wild, S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global prevalence of diabetes: estimates for 2000 and projections for 2030,” Diabetes Care 27(5), 1047–1053 (2004).CrossRefGoogle Scholar
  2. 2.
    L. Engel, C. Delaney, and M. Cohen, “Blood glucose meters: an independent head-to-head comparison,” Practical Diabetes International 15(1), 15–18 (1998).CrossRefGoogle Scholar
  3. 3.
    K. F. Braun, W. Otter, S. M. Sandor, E. Standl, and O. Schnell, “All-cause in-hospital mortality and comorbidity in diabetic and non-diabetic patients with stroke,” Diabetes Research and Clinical Practice, 98(1), 164–168 (2012).CrossRefGoogle Scholar
  4. 4.
    B. K. Smith, J. Frost, M. Albayrak, and R. Sudhakar, “Integrating glucometers and digital photography as experience capture tools to enhance patient understanding and communication of diabetes self-management practices,” Personal and Ubiquitous Computing 11(4), 273–286 (2010).CrossRefGoogle Scholar
  5. 5.
    Y. M. Luijf, J. K. Mader, W. Doll, T. Pieber, A. Farret, J. Place, E. Renard, D. Bruttomesso, A. Filippi, A. Avogaro, S. Arnolds, C. Benesch, L. Heinemann, and J. H. DeVries, “Accuracy and reliability of continuous glucose monitoring systems: a head-to-head comparison,” Diabetes Technology and Therapeutics 15(8), 722–727 (2013).CrossRefGoogle Scholar
  6. 6.
    R. J. Falconer, and A. G. Markelz, “Terahertz spectroscopic analysis of peptides and proteins,” Journal of Infrared, Millimeter, and Terahertz Waves, 33(10), 973–988, (2012).CrossRefGoogle Scholar
  7. 7.
    J. Xu, K. W. Plaxco, and S. J. Allen, “Probing the collective vibrational dynamics of a protein in liquid water by terahertz absorption spectroscopy,” Protein Science 15(5) 1175–1181 (2006).CrossRefGoogle Scholar
  8. 8.
    Yuichi Ogawa, Shin’ichiro Hayashi, Masato Oikawa, Chiko Otani, and Kodo Kawase, “Interference terahertz label-free imaging for protein detection on a membrane,” Opt. Express, 16(26), 22083–22089 (2008).CrossRefGoogle Scholar
  9. 9.
    A. G. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chemical Physics Letters 320(1–2), 42–48 (2000).CrossRefGoogle Scholar
  10. 10.
    B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Physics in Medicine and Biology 47(21), 3807–3814 (2002).CrossRefGoogle Scholar
  11. 11.
    N. Nagai, and Y. Katsurazawa, “Analysis of the inter-molecular interactions between amino acids and acetone by THz spectroscopy,” Biopolymers 85(3), 207–213 (2007).CrossRefGoogle Scholar
  12. 12.
    R. M Woodward, V. P Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” Journal of Biological Physics 29(2–3) 257–259 (2003).CrossRefGoogle Scholar
  13. 13.
    P. C. Ashworth, E. Pickwell-MacPherson, E. Provenzano, S. E. Pinder, A. D. Purushotham, M. Pepper, and V. P. Wallace, “Terahertz pulsed spectroscopy of freshly excised human breast cancer,” Opt. Express 17(15), 12444–12454 (2009).CrossRefGoogle Scholar
  14. 14.
    B. Ferguson, S. Wang, D. Gray, D. Abbott, and X. C. Zhang, “Identification of biological tissue using chirped probe THz imaging,” Microelectronics Journal 33(12), 1043–1051 (2002).CrossRefGoogle Scholar
  15. 15.
    T. Loffler, T. Bauer, K. Siebert, H. Roskos, A. Fitzgerald, and S. Czasch, “Terahertz dark-field imaging of biomedical tissue,” Opts. Express 9(12), 616–621 (2001)CrossRefGoogle Scholar
  16. 16.
    R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).CrossRefGoogle Scholar
  17. 17.
    D. Crawley, M. Pepper, V. P. Wallace, B. Cole, D. Arnone, and C. Longbottom, “Three-dimensional terahertz pulse imaging of dental tissue,” J. Biomed. Opt. 8(2), 303–307 (2003).CrossRefGoogle Scholar
  18. 18.
    S. Huang, P. C. Ashworth, K. W. C. Kan, Y. Chen, V. P. Wallace, Y. Zhang, and Emma Pickwell-MacPherson, “Improved sample characterization in terahertz reflection imaging and spectroscopy,” Opts. Express 17(5), 3848–3854 (2009)CrossRefGoogle Scholar
  19. 19.
    H. Chen, Chui-Min Chiu, Wei-Ling Lai, Yuan-Fu Tsai, Tzu-Fang Tseng, Jen-Tang Lu, Wen-Jeng Lee, Hsin-Yi Huang, Chung-Wu Lin, and Chi-Kuang Sun, “Performance of THz fiber-scanning near-field microscopy to diagnose breast tumors,” Optics Express 19(20) 19523-19531 (2011)CrossRefGoogle Scholar
  20. 20.
    Hua Chen, Xiaofeng Chen, Shihua Ma, Xiumei Wu, Wenxing Yang, Weifeng , Zhang, and Xiao Li, “Quantify glucose level in freshly diabetic’s blood by terahertz time-domain spectroscopy,” Journal of Infrared Millimeter and Terahertz Waves, 39(4) 399–408 (2018)Google Scholar
  21. 21.
    C. Reid, G. Reese, A.P. Gibson, and V.P.Wallace, “Terahertz time domain spectroscopy of human blood,” IEEE J. Biomed. Health Inform. 17(4), 774–778 (2013)CrossRefGoogle Scholar
  22. 22.
    K. Jeong, Y.-M.Huh, S.-H.Kim, Y. Park, J.-H. Son, S.J. Oh, and J.-S. Suh, “Characterization of blood using terahertz waves,” J. Biomed. Opt. 18(10), 107008 (2013)CrossRefGoogle Scholar
  23. 23.
    O. P. Cherkasova, M. M. Nazarov, I. N. Smirnova, A. A. Angeluts, and A. P. Shkurinov, “Application of timedomain THz spectroscopy for studying blood plasma of rats with experimental diabetes,” Phys. Wave Phenom. 22(3), 185–188 (2014).CrossRefGoogle Scholar
  24. 24.
    C. B. Reid, G. Reese, A. P Gibson, V. P. Wallace, “Terahertz time domain spectroscopy of human blood,” IEEE Transactions on Terahertz Science and Technology 3(4), 363–367 (2013).CrossRefGoogle Scholar
  25. 25.
    G. G. Hernandez-Cardoso, S. C. Rojas-Landeros, M. Alfaro-Gomez, A. I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A. R. Castillo-Guzman, H. L. Lopez-Lemus, and E. Castro-Camus, “Terahertz imaging for early screening of diabetic foot syndrome: a proof of concept,” Scientific Reports, 7, 42124 (2017).CrossRefGoogle Scholar
  26. 26.
    Y Shoji and H Nakashima, “Glucose-lowering effect of powder formulation of African black tea extract in KK-A(y)/TaJcl diabetic mouse,” Archives of Pharmacal Research 29(9), 786–794 (2006).CrossRefGoogle Scholar
  27. 27.
    R. Taylor, E. Hayes, and L. A. Toth, “Evaluation of an anesthetic regimen for retroorbital blood collection from mice,” Contemporary Topics in Laboratory Animal Science 39(2), 14–17 (2000).Google Scholar
  28. 28.
    J D Ayers, P A Rota, M L Collins, C P Drew, “Alternatives to retroorbital blood collection in hispid cotton rats,” Journal of the American Association for Laboratory Animal Science 46(2), 74–80 (2007).Google Scholar
  29. 29.
    G. M. Png, J. W. Choi, B. W-H Ng, S. P. Mickan, D. Abbott, and X. C. Zhang, "The impact of hydration changes in fresh bio-tissue on THz spectroscopic measurements," Phys. Med. Biol. 53, 3501–3517 (2008)CrossRefGoogle Scholar
  30. 30.
    H. Chen, Tzu-Fang Tseng, Jen-Tang Lu, Te-Hsuen Chen, Chung-Chiu Kuo, Shih-Chen Fu, Wen-Jeng Lee, Yuan-Fu Tsai, Yu-You Huang, Eric Y. Chuang, Yuh-Jing Hwang and Chi-Kung Sun, “High-sensitivity in vivo THz transmission imaging of early human breast cancer in a subcutaneous xenograft mouse model,” Optics Express 19(22) 21552–21562 (2011).CrossRefGoogle Scholar
  31. 31.
    E. Berry, G. C. Walker, A. J. Fitzgerald, N. N. Zinov'ev, M. Chamberlain, S. W. Smye, R. E. Miles, and M. A. Smith, “Do in vivo terahertz imaging systems comply with safety guidelines?” J. Laser Appl. 15(3), 192–198 (2003). 22.CrossRefGoogle Scholar
  32. 32.
    K. H. Ng, “Non-ionizing radiations: sources, biological effects, emissions and exposures,” in Proceedings of the International Conference on Non-Ionizing Radiation at UNITEN (ICNIR2003) Electromagnetic Fields and Our Health (Selangor, Malaysia, 2003), pp. 1–16.Google Scholar
  33. 33.
    C. M. Chiu, H. W. Chen, Y. R. Huang, Y. J. Hwang, W. J. Lee, H. Y. Huang, and C. K. Sun, “All-terahertz fiber-scanning near-field microscopy,” Opts. Lett. 34(7), 1084–1086 (2008).CrossRefGoogle Scholar
  34. 34.
    L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz wave guiding,” Opts. Lett. 31(3), 308–310 (2006).CrossRefGoogle Scholar
  35. 35.
    H. W. Chen, Y. T. Li, J. L. Kuo, J. Y. Lu, L. J. Chen, C. L. Pan, and C. K. Sun, “Investigation on spectral loss characteristics of subwavelength terahertz fibers,” Opts. Lett. 32(9), 1017–1019 (2007).CrossRefGoogle Scholar
  36. 36.
    M. J. Tierney, “Glucose monitoring by reverse iontophoresis,” Springer US, 18(1), 285–293 (2000).Google Scholar
  37. 37.
    A. Giouvanoudi, W. B. Amaee, J. A. Sutton, P. Horton, R. Morton, W. Hall, L. Morgan , M. R. Freedman, and N. M. Spyrou, “Physiological interpretation of electrical impedance epigastrography measurements,” Physiol Meas. 24(1), 45–55 (2003).CrossRefGoogle Scholar
  38. 38.
    O. K. Cho, Y. O. Kim, H. Mitsumaki, and K. Kuwa, “ Noninvasive measurement of glucose by metabolic heat conformation method,” Clinical Chemistry 50(10), 1894–1898 (2004).CrossRefGoogle Scholar
  39. 39.
    M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mäntele, “In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy,” Analytical Chemistry 85(2), 1013–1020 (2012).CrossRefGoogle Scholar
  40. 40.
    Y. Hayashi, L. Livshits, A. Caduff, and Y. Feldman, “Dielectric spectroscopy study of specific glucose influence on human erythrocyte membranes,” Journal of Physics D: Applied Physics 36(4), 369–374 (2003).CrossRefGoogle Scholar
  41. 41.
    M. Ren, and M. A. Arnold, “Comparison of multivariate calibration models for glucose, urea, and lactate from near-infrared and Raman spectra,” Analytical and Bioanalytical Chemistry 387(3), 879–888 (2007).CrossRefGoogle Scholar
  42. 42.
    F. Hussain, “Fluorescence-based glucose sensing,” Biosensors and Bioelectronics 20(12), 2555–2565 (2005).CrossRefGoogle Scholar
  43. 43.
    S. Tanna, T. M. Joan, T. S. Sahota, and K. Sawicka, “Glucose-responsive UV polymerised dextran-concanavalin A acrylic derivatised mixtures for closed-loop insulin delivery,” Biomaterials 27 (8), 1586–1597 (2006).CrossRefGoogle Scholar
  44. 44.
    L. Deng, Y. Wang, L. Shang, D. Wen, F. Wang, and S. Dong, “A sensitive NADH and glucose biosensor tuned by visible light based on thionine bridged carbon nanotubes and gold nanoparticles multilayer,” Biosensors and Bioelectronics 24(4), 951–957 (2008).CrossRefGoogle Scholar
  45. 45.
    E. Vezouviou, and C. R. Lowe, “A near infrared holographic glucose sensor,” Biosensors and Bioelectronics 68(15), 371–381 (2015).CrossRefGoogle Scholar
  46. 46.
    P. S. Jensen, J. Bak, S. Ladefoged, and S. Anderssonengels, “Determination of urea, glucose, and phosphate in dialysate with Fourier transform infrared spectroscopy,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 60(4), 899–905 (2004).CrossRefGoogle Scholar
  47. 47.
    S. Mashimo, N. Miura, T. Umehara, “The structure of water determined by microwave dielectric study on water mixtures with glucose, polysaccharides, and L-ascorbic acid,” Journal of Chemical Physics 97 (9), 6759–6765 (1992).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of PhysicsSoutheast UniversityNanjingChina
  2. 2.The First Affiliated Hospital of Nanjing Medical UniversityNanjingChina

Personalised recommendations