Advertisement

A 90° Waveguide Hybrid with Low Amplitude Imbalance in Full W-Band

  • Jiangqiao DingEmail author
  • Yun Zhao
  • Jun-Xiang Ge
  • Shengcai Shi
Article
  • 18 Downloads

Abstract

This paper reports a high-performance 90° waveguide hybrid coupler working in the full W-band. We demonstrate an 8-branch hybrid which features the low amplitude imbalance over a wide band by first increasing the waveguide height inwards and second introducing waveguide height discontinuity sections on the other inner side. Such a compact and robust waveguide hybrid coupler can be implemented in a split-block easily by current computer numerical control milling technology. The measured results show that the reflection and isolation are better than 16 dB, the amplitude imbalance is less than 0.8 dB, and the phase difference is within 90–4.25°/+ 2.38°, which are close to the simulations in most of the W-band.

Keywords

Directional coupler Hybrid Waveguide Wideband W-band 

Notes

Funding Information

This work was supported in part by the National Natural Science Foundation of China under Grant 61801230 and 11190012, in part by the National Key Research and Development Program of China under Grant 2017YFA0304003, in part by the Scientific Instrument Developing Project of Chinese Academy of Sciences under Grant YJKYYQ20170031, and in part by the Startup Foundation for Introducing Talent of NUIST under Grant 2018r010 and 2018r018.

References

  1. 1.
    Siegel P. H.: Terahertz technology, Trans. Microw. Theory Tech., 2002, 50, (3), pp. 910–928CrossRefGoogle Scholar
  2. 2.
    Che, G., Gordon, S., Day, P., et al: A superconducting phase shifter and traveling wave kinetic inductance parametric amplifier for W-band astronomy, 2017, arXiv:1710.11335 [astro-ph.IM] Google Scholar
  3. 3.
    Stacey, G. J., Aravena, M., Basu. K., et al.: CCAT-prime: science with an ultra-widefield submillimeter observatory at cerro chajnantor, 2018, arXiv:1807.04354 [astro-ph.GA] Google Scholar
  4. 4.
    Kooi, J. W., Chamberlin, R. A., Monje, R., Force, B., Miller, D., and Phillips, T. D.: Balanced receiver technology development for the Caltech submillimeter observatory, Trans. THz Sci. Tech., 2012, 2, (1), pp. 71–82CrossRefGoogle Scholar
  5. 5.
    Finkel, M., Thierschmann, H., Galatro, L., et al.: Performance of THz components based on microstrip PECVD SiNx technology, Trans. THz Sci. Tech., 2017, 7, (6), pp. 765–771CrossRefGoogle Scholar
  6. 6.
    Westig, M. P. and Klapwijk, T. M.: Josephson parametric reflection amplifier with integrated directionality, Phys. Rev. Applied, 2018, 9, 064010CrossRefGoogle Scholar
  7. 7.
    Westig, M. P., M. Jacobs, Stutzki J., et al.: Balanced superconductor–insulator–superconductor mixer on a 9 μm silicon membrane, Supercond. Sci. Technol., 2013, 26, 039502CrossRefGoogle Scholar
  8. 8.
    Westig, M. P., Justen, M., Jacobs, K., et al.: A 490 GHz planar circuit balanced Nb-Al2O3-Nb quasiparticle mixer for radio astronomy: Application to quantitative local oscillator noise determination, Journal of Applied Physics, 2012, 112, 093919CrossRefGoogle Scholar
  9. 9.
    Siles, J. V., Maestrini, A., Davies, S., Alderman, B., and Wang, H.: Single-waveguide power-combined multipliers for next generation LO sources above 100 GHz, in Proc. EuMIC, 2010, pp. 234–237Google Scholar
  10. 10.
    Kojima, T., Gonzalez, A., Asayama, S., and Uzawa, Y.: Design and development of a hybrid-coupled waveguide multiplexer for a multiband receiver, Trans. THz Sci. Tech., 2017, 7, (1), pp. 10–19Google Scholar
  11. 11.
    Srikanth, S. and Kerr, A.: Waveguide quadrature hybrids for ALMA receivers, ALMA Memo #343, 2001Google Scholar
  12. 12.
    Li, Y., Kirby, P. L., Offranc, O., and Papapolymerou, J.: Silicon micromachined W-band hybrid coupler and power divider using DRIE technique, Microw. Wireless Compon. Lett., 2008, 18, (1), pp. 22–24CrossRefGoogle Scholar
  13. 13.
    Kuroiwa, K., Gonzalez, A., Koyano, M., et al.: Short-slot hybrid coupler using linear taper in W-band, J. Infrared Milli. THz Waves, 2013, 34, (12), pp. 815–823Google Scholar
  14. 14.
    Rashid, H., Meledin, D., Desmaris, V., and Belitsky, V.: Novel waveguide 3 dB hybrid with improved amplitude imbalance, Microw. Wireless Compon. Lett., 2014, 24, (4), pp. 212–214CrossRefGoogle Scholar
  15. 15.
    Rashid, H., Desmaris, V., Belitsky, V., Ruf, M., Bednorz, T., and Henkel, A.: Design of wideband waveguide hybrid with ultra-low amplitude imbalance, Trans. THz Sci. Tech., 2016, 6, (1), pp. 83–90CrossRefGoogle Scholar
  16. 16.
    Matthaei, G. L., Young, L., and Jones, E. M. T.: Microwave filters, impedance-matching networks, and coupling structures, McGraw-Hill Book Company, 1964Google Scholar
  17. 17.
    Reed, J.: The multiple branch waveguide coupler, Trans. Microw. Theory Tech., 1958, 6, pp. 398–403CrossRefGoogle Scholar
  18. 18.
    Sobis, P. J., Stake, J., and Emrich, A.: A 170 GHz 45° hybrid for submillimeter wave sideband separating subharmonic mixers, Microw. Wirel. Compon. Lett., 2008, 18, (10), pp. 680–682CrossRefGoogle Scholar
  19. 19.
    Pozar, D. M.: Microwave engineering, 2005 by John Wiley & Sons, IncGoogle Scholar
  20. 20.
    Ding, J., Liu, D., Shi, S.: W-band quasi-elliptical waveguide filter with cross-coupling and source-load coupling, Electron. Lett., 2016, 52, (23), pp. 1960–1961CrossRefGoogle Scholar
  21. 21.
    Desmaris, V., Meledin, D., Pavolotsky, A., Monje, R., and Belitsky, V.: All-metal micromachining for the fabrication of sub-millimetre and THz waveguide components and circuits, J. Micromech. Microeng., 2008, 18, 095004CrossRefGoogle Scholar
  22. 22.
    Svedin, J., Malmqvist, R., Beuerle, B., et al.: A 230–300 GHz low-loss micromachined waveguide hybrid coupler, in proc. EuMC, 2017, pp. 616–619Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electronic and Information EngineeringNanjing University of Information Science and TechnologyNanjingPeople’s Republic of China
  2. 2.Purple Mountain ObservatoryChinese Academy of Sciences and Key Laboratory of Radio AstronomyNanjingPeople’s Republic of China

Personalised recommendations