Advertisement

Designing a Broadband Terahertz Half-Wave Plate Using an Anisotropic Metasurface

  • C. Gandhi
  • P. Ramesh Babu
  • K. SenthilnathanEmail author
Article
  • 42 Downloads

Abstract

We design a multi-resonance metasurface at terahertz frequency, which can act as a polarization manipulator in the reflective mode. The proposed polarization converter consists of periodic unit cells and each unit cell has a resonator on the top surface. While a dielectric material forms the middle layer, a gold foil constitutes the bottom layer. The proposed polarization converter converts a linearly polarized terahertz wave into an orthogonal one for a wide range of operating frequencies. It provides a maximum conversion efficiency in the frequency range of 0.64–1.47 THz where the magnitudes of the cross reflection coefficients exceed 90%. The calculated relative bandwidth of the proposed converter is 78.67%. The phase difference of the reflected wave is between − 180 and 180 depending upon the operating frequency. Further, based on the detailed numerical results, we corroborate that the proposed device is robust against the variations in the structural parameters. The proposed converter maintains the conversion efficiency for various incident angles from 0 to 30. Besides, we also demonstrate the possibility of tuning the polarization conversion ratio by integrating silicon in the metasurface. The proposed metasurface may find potential applications in communications, antenna, and radar cross-section reduction technology.

Keywords

Polarization converter Tunable metasurface Wave-plate Terahertz frequency 

Notes

References

  1. 1.
    C.D. Stoik, M.J. Bohn, J.L. Blackshire, Optics Express 16(21), 17039 (2008).Google Scholar
  2. 2.
    J.F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars, Semiconductor Science and Technology 20(7), S266 (2005).Google Scholar
  3. 3.
    R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebei, T. Kurner, IEEE Antennas and Propagation Magazine 49(6), 24 (2007).Google Scholar
  4. 4.
    J. Dai, J. Liu, X.C. Zhang, IEEE Journal of selected topics in Quantum Electronics 17(1), 183 (2011).Google Scholar
  5. 5.
    F. Blanchard, G. Sharma, L. Razzari, X. Ropagnol, H.C. Bandulet, F. Vidal, R. Morandotti, J.C. Kieffer, T. Ozaki, H. Tiedje, et al., IEEE Journal of Selected Topics in Quantum Electronics 17(1), 5 (2011).Google Scholar
  6. 6.
    A. Siemion, A. Siemion, M. Makowski, J. Suszek, J. Bomba, A. Czerwiński, F. Garet, J.L. Coutaz, M. Sypek, Optics Letters 37(20), 4320 (2012).Google Scholar
  7. 7.
    W.D. Furlan, V. Ferrando, J.A. Monsoriu, P. Zagrajek, E. Czerwińska, M. Szustakowski, Optics Letters 41(8), 1748 (2016).Google Scholar
  8. 8.
    J. Liu, J. Dai, S.L. Chin, X.C. Zhang, Nature Photonics 4(9), 627 (2010).Google Scholar
  9. 9.
    L. Deng, J. Teng, L. Zhang, Q. Wu, H. Liu, X. Zhang, S. Chua, Applied Physics Letters 101(1), 011101 (2012).Google Scholar
  10. 10.
    C.R. Simovski, P.A. Belov, A.V. Atrashchenko, Y.S. Kivshar, Advanced Materials 24(31), 4229 (2012).Google Scholar
  11. 11.
    J.B. Pendry, A.J. Holden, D.J. Robbins, W. Stewart, IEEE transactions on microwave theory and techniques 47(11), 2075 (1999).Google Scholar
  12. 12.
    J.B. Pendry, Physical Review Letters 85(18), 3966 (2000).Google Scholar
  13. 13.
    D. Schurig, J. Mock, B. Justice, S.A. Cummer, J.B. Pendry, A. Starr, D. Smith, Science 314(5801), 977 (2006).Google Scholar
  14. 14.
    N.I. Landy, S. Sajuyigbe, J. Mock, D. Smith, W. Padilla, Physical Review Letters 100(20), 207402 (2008).Google Scholar
  15. 15.
    H.T. Chen, W.J. Padilla, M.J. Cich, A.K. Azad, R.D. Averitt, A.J. Taylor, Nature photonics 3(3), 148 (2009).Google Scholar
  16. 16.
    N.K. Grady, J.E. Heyes, D.R. Chowdhury, Y. Zeng, M.T. Reiten, A.K. Azad, A.J. Taylor, D.A. Dalvit, H.T. Chen, Science p. 1235399 (2013).Google Scholar
  17. 17.
    N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.P. Tetienne, F. Capasso, Z. Gaburro, Science p. 1210713 (2011).Google Scholar
  18. 18.
    Y. Yang, W. Wang, P. Moitra, I.I. Kravchenko, D.P. Briggs, J. Valentine, Nano Letters 14(3), 1394 (2014).Google Scholar
  19. 19.
    J. Hao, Y. Yuan, L. Ran, T. Jiang, J.A. Kong, C. Chan, L. Zhou, Physical Review Letters 99(6), 063908 (2007).Google Scholar
  20. 20.
    Y. Jia, Y. Liu, W. Zhang, S. Gong, Applied Physics Letters 109(5), 051901 (2016).Google Scholar
  21. 21.
    L. Zhang, P. Zhou, H. Lu, L. Zhang, J. Xie, L. Deng, Optical Materials Express 6(4), 1393 (2016).Google Scholar
  22. 22.
    Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, J.L. Pelouard, Applied Physics Letters 104(11), 111105 (2014).Google Scholar
  23. 23.
    Y. Jiang, L. Wang, J. Wang, C.N. Akwuruoha, W. Cao, Optics Express 25(22), 27616 (2017).Google Scholar
  24. 24.
    R. Xia, X. Jing, X. Gui, Y. Tian, Z. Hong, Optical Materials Express 7(3), 977 (2017).Google Scholar
  25. 25.
    W. Zhu, R. Yang, Y. Fan, Q. Fu, H. Wu, P. Zhang, N.H. Shen, F. Zhang, Nanoscale (2018).Google Scholar
  26. 26.
    R. Singh, E. Plum, W. Zhang, N.I. Zheludev, Optics Express 18(13), 13425 (2010).Google Scholar
  27. 27.
    J. Zhou, D.R. Chowdhury, R. Zhao, A.K. Azad, H.T. Chen, C.M. Soukoulis, A.J. Taylor, J.F. O’Hara, Physical Review B 86(3), 035448 (2012).Google Scholar
  28. 28.
    J.K. Gansel, M. Thiel, M.S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, Science 325(5947), 1513 (2009).Google Scholar
  29. 29.
    X. Ma, C. Huang, M. Pu, C. Hu, Q. Feng, X. Luo, Optics Express 20(14), 16050 (2012).Google Scholar
  30. 30.
    C. Han, E.P. Parrott, E. Pickwell-MacPherson, IEEE Journal of Selected Topics in Quantum Electronics 23(4), 1 (2017).Google Scholar
  31. 31.
    Y.Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R.Z. Gong, M. Bhaskaran, S. Sriram, D. Abbott, Applied Physics Letters 105(18), 181111 (2014).Google Scholar
  32. 32.
    X.F. Zang, S.J. Liu, H.H. Gong, Y. Wang, Y.M. Zhu, JOSA B 35(4), 950 (2018).Google Scholar
  33. 33.
    W. Zhang, J. Jiang, J. Yuan, S. Liang, J. Qian, J. Shu, L. Jiang, OSA Continuum 1(1), 124 (2018).Google Scholar
  34. 34.
    J. Zhao, Y. Cheng, Z. Cheng, IEEE Photonics Journal 10(1), 1 (2018).Google Scholar
  35. 35.
    T. Lv, Y. Li, H. Ma, Z. Zhu, Z. Li, C. Guan, J. Shi, H. Zhang, T. Cui, Scientific Reports 6, 23186 (2016).Google Scholar
  36. 36.
    X. Zheng, Z. Xiao, X. Ling, Plasmonics 13(1), 287 (2018).Google Scholar
  37. 37.
    Z. Xiao, H. Zou, X. Zheng, X. Ling, L. Wang, Optical and Quantum Electronics 49(12), 401 (2017).Google Scholar
  38. 38.
    N.H. Shen, M. Massaouti, M. Gokkavas, J.M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, C.M. Soukoulis, Physical Review Letters 106(3), 037403 (2011).Google Scholar
  39. 39.
    M. Gupta, Y.K. Srivastava, R. Singh, Advanced Materials 30(4), 1704845 (2018).Google Scholar
  40. 40.
    M. Manjappa, Y.K. Srivastava, L. Cong, I. Al-Naib, R. Singh, Advanced Materials 29(3), 1603355 (2017).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, School of Advanced SciencesVellore Institute of TechnologyVelloreIndia

Personalised recommendations