Monitoring the Isothermal Crystallization Kinetics of PET-A Using THz-TDS
- 8 Downloads
Abstract
Using terahertz time-domain spectroscopy (THz-TDS), we monitor the isothermal crystallization kinetics of amorphous polyethylene terephthalate (PET-A). PET-A was tempered at different temperatures and for a varied amount of time to induce a isothermal crystallization. Afterwards the THz spectra were recorded and analyzed. An adapted Avrami equation was used to analyze the spectral data to monitor the isothermal crystallization. It was found that the adapted Avrami theory is a good approach to describe the kinetics of isothermal crystallization and allows to determine kinetic parameters as with classical technologies. Therefore, we conclude that THz-TDS offers a non-destructive method to characterize the kinetics of isothermal crystallization in polymers.
Keywords
Terahertz Spectroscopy Crystallization Avrami equationNotes
References
- 1.T. Kleine-Ostmann and T. Nagatsuma, J. Infrared, Millimeter, Terahertz Waves 32 (2011), 143.Google Scholar
- 2.H. Song and T. Nagatsuma, IEEE Trans. Terahertz Sci. Technol. 1 (2011), 256.Google Scholar
- 3.J. Federici and L. Moeller, J. Appl. Phys. 107 (2010), 111101.Google Scholar
- 4.K. Yamamoto, K. Timinaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, Biophys. J. Biophys. Lett. 89 (2005), L22.Google Scholar
- 5.B.M. Fischer, M. Walther, and P.U. Jepsed, Phys. Med. Biol. 47 (2002), 3807.Google Scholar
- 6.A.D. Burnett, W. Fan, P.C. Upadhya, J.E. Cunningham, M.D. Hargreaves, T. Munshi, H.G.M. Edwards, E.H. Linfield, and G. Davies, Analyst 134 (2009), 1658.Google Scholar
- 7.A.G. Davies, A.D. Burnett, W. Fan, E.H. Linfield, and J.E. Cunningham, Mater. Today 11 (2008), 18.Google Scholar
- 8.Y.C. Shen, T. Lo, P.F. Taday, B.E. Cole, W.R. Tribe, and M.C. Kemp, Appl. Phys. Lett. 86 (2005), 241116.Google Scholar
- 9.L. Tian, Q. Zhou, B. Jin, K. Zhao, S. Zhao, Y. Shi, and C. Zhang, Sci. China, Ser. G Physics, Mech. Astron. 52 (2009), 1938.Google Scholar
- 10.A. Adbul-Munaim, M. Reuter, M. Koch, and D.G. Watson, J. Infrared, Millimeter, Terahertz Waves 36 (2015), 687.Google Scholar
- 11.D. Banerjee, W. von Spiegel, M.D. Thomson, S. Schabel, and H.G. Roskos, Opt. Express 16 (2008), 9060.Google Scholar
- 12.B. S.-Y. Ung, B.M. Fischer, B. W.-H. Ng, and D. Abbott, Proc. SPIE, BioMEMS and Nanotechnology III 6799 (2007), 67991E.Google Scholar
- 13.Y.-S. Lee, Principles of Terahertz Science and Technology, Springer Science+Business Media, New York, 2009.Google Scholar
- 14.S. Wietzke, C. Jansen, F. Rutz, D.M. Mittleman, and M. Koch, Polym. Test 26 (2007a), 614.Google Scholar
- 15.O. Peters, M. Schwerdtfeger, S. Wietzke, S. Sostmann, R. Scheunemann, R. Wilk, R. Holzwarth, M. Koch, and B.M. Fischer, Polym. Test 32 (2013), 932.Google Scholar
- 16.C. Joerdens, M. Scheller, M. Wichmann, M. Mikulics, K. Wiesauer, and M. Koch, Appl. Opt. 48 (2009), 2037.Google Scholar
- 17.S. Katzletz, M. Pfleger, H. Phueringer, M. Mikulics, N. Vieweg, O. Peters, B. Scherger, M. Scheller, M. Koch, and K. Wiesauer, Opt. Express 20 (2012), 23025.Google Scholar
- 18.C. Jansen, S. Wietzke, H. Wang, M. Koch, and G. Zhao, Poylm. Test 30 (2011), 150.Google Scholar
- 19.D. Zhao, J. Ren, X. Qao, and L. Li, Appl. Opt. Photonics China 9674 (2015), 96741P.Google Scholar
- 20.S. Wietzke, C. Joerdens, N. Krumbholz, B. Baudrit, M. Bastian, and M. Koch, J. Eur. Opt. Soc. Publ. 2 (2007b), 2.Google Scholar
- 21.S. Sommer, T. Raidt, B.M. Fischer, F. Katzenberg, J.C. Tiller, and M. Koch, J. Infrared, Millimeter, Terahertz Waves 37 (2015), 189.Google Scholar
- 22.S. Wietzke, M. Reuter, N. Nestle, E. Klimov, U. Zadok, B.M. Fischer, and M. Koch, J. Infrared, Millimeter, Terahertz Waves 32 (2011a), 952.Google Scholar
- 23.S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B.M. Fischer, and M. Koch, J. Mol. Struct. 1006 (2011b), 41.Google Scholar
- 24.H. Hoshina, S. Ishii, S. Yamamoto, Y. Morisawa, H. Satu, T. Uchiyama, Y. Ozaki, and C. Otani, IEEE Trans. Terahertz Sci. Technol. 3 (2013), 248.Google Scholar
- 25.S. Wietzke, C. Jansen, T. Jung, M. Reuter, B. Baudrit, M. Bastian, S. Chatterjee, and M. Koch, Opt. Express 17 (2009), 19006.Google Scholar
- 26.V. Hoffmann, W. Frank, and W. Zeil, Kolloid-Zeitschrift 241 (1970), 1044.Google Scholar
- 27.M. Avrami, J. Chem. Phys. 7 (1939), 1103.Google Scholar
- 28.N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Goebel, and M. Schell, J. Infrared, Millimeter, Terahertz Waves 35 (2014), 823.Google Scholar
- 29.P.U. Jepsen, D.G. Cooke, and M. Koch, Laser Photonics Rev. 5 (2011), 124.Google Scholar
- 30.M. Scheller, Journal of Infrared, Millimeter and Terahertz Waves 35 (2014), 638.Google Scholar
- 31.S.A. Jabarin, J. Appl. Polym. Sci. 34 (1987), 85.Google Scholar
- 32.S.A. Jabarin, J. Appl. Polym. Sci. 34 (1987), 97.Google Scholar
- 33.N.W. Hayes, G. Beamson, D.T. Clark, D.S.-L. Law, and R. Raval, Surf. Interfac Anal. 24 (1996), 723.Google Scholar
- 34.Y. Long, R.A. Shanks, and Z.H. Stachurski, Prog. Polym. Sci. 20 (1995), 651.Google Scholar
- 35.G.W. Ehrenstein, G. Riedel, and P. Trawiel, Thermal analysis of plastics, Carl Hanser Verlag, Munich, 2004.Google Scholar
- 36.W. Frank and D. Knaupp, Berichte der Bunsengesellschaft für Phys. Chemie 79 (1975), 1041.Google Scholar
- 37.W.F. Frank, W. Strohmeier, and M. Hallensleben, Polymer (Guildf.) 22 (1981), 615.Google Scholar
- 38.R.M.R. Wellen and M.S. Rabello, J. Mater. Sci. 40 (2005), 6099.Google Scholar
- 39.M. Rabello and J. White, Polymer (Guildf). 42 (1997), 9423.Google Scholar
- 40.X. Lu and J. Hay, Polymer (Guildf). 42 (2001), 9423.Google Scholar
- 41.S. Liu, Y. Yu, Y. Cui, H. Zhang, and Z. Mo, J. Appl. Polym. Sci. 70 (1998), 2731.Google Scholar
- 42.B. Wunderlich, Thermal analysis of polymeric materials, Springer, Berlin, 2005.Google Scholar