Monitoring the Isothermal Crystallization Kinetics of PET-A Using THz-TDS

  • S. EngelbrechtEmail author
  • K.-H. Tybussek
  • J. Sampaio
  • J. Böhmler
  • B. M. Fischer
  • S. Sommer


Using terahertz time-domain spectroscopy (THz-TDS), we monitor the isothermal crystallization kinetics of amorphous polyethylene terephthalate (PET-A). PET-A was tempered at different temperatures and for a varied amount of time to induce a isothermal crystallization. Afterwards the THz spectra were recorded and analyzed. An adapted Avrami equation was used to analyze the spectral data to monitor the isothermal crystallization. It was found that the adapted Avrami theory is a good approach to describe the kinetics of isothermal crystallization and allows to determine kinetic parameters as with classical technologies. Therefore, we conclude that THz-TDS offers a non-destructive method to characterize the kinetics of isothermal crystallization in polymers.


Terahertz Spectroscopy Crystallization Avrami equation 



  1. 1.
    T. Kleine-Ostmann and T. Nagatsuma, J. Infrared, Millimeter, Terahertz Waves 32 (2011), 143.Google Scholar
  2. 2.
    H. Song and T. Nagatsuma, IEEE Trans. Terahertz Sci. Technol. 1 (2011), 256.Google Scholar
  3. 3.
    J. Federici and L. Moeller, J. Appl. Phys. 107 (2010), 111101.Google Scholar
  4. 4.
    K. Yamamoto, K. Timinaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, Biophys. J. Biophys. Lett. 89 (2005), L22.Google Scholar
  5. 5.
    B.M. Fischer, M. Walther, and P.U. Jepsed, Phys. Med. Biol. 47 (2002), 3807.Google Scholar
  6. 6.
    A.D. Burnett, W. Fan, P.C. Upadhya, J.E. Cunningham, M.D. Hargreaves, T. Munshi, H.G.M. Edwards, E.H. Linfield, and G. Davies, Analyst 134 (2009), 1658.Google Scholar
  7. 7.
    A.G. Davies, A.D. Burnett, W. Fan, E.H. Linfield, and J.E. Cunningham, Mater. Today 11 (2008), 18.Google Scholar
  8. 8.
    Y.C. Shen, T. Lo, P.F. Taday, B.E. Cole, W.R. Tribe, and M.C. Kemp, Appl. Phys. Lett. 86 (2005), 241116.Google Scholar
  9. 9.
    L. Tian, Q. Zhou, B. Jin, K. Zhao, S. Zhao, Y. Shi, and C. Zhang, Sci. China, Ser. G Physics, Mech. Astron. 52 (2009), 1938.Google Scholar
  10. 10.
    A. Adbul-Munaim, M. Reuter, M. Koch, and D.G. Watson, J. Infrared, Millimeter, Terahertz Waves 36 (2015), 687.Google Scholar
  11. 11.
    D. Banerjee, W. von Spiegel, M.D. Thomson, S. Schabel, and H.G. Roskos, Opt. Express 16 (2008), 9060.Google Scholar
  12. 12.
    B. S.-Y. Ung, B.M. Fischer, B. W.-H. Ng, and D. Abbott, Proc. SPIE, BioMEMS and Nanotechnology III 6799 (2007), 67991E.Google Scholar
  13. 13.
    Y.-S. Lee, Principles of Terahertz Science and Technology, Springer Science+Business Media, New York, 2009.Google Scholar
  14. 14.
    S. Wietzke, C. Jansen, F. Rutz, D.M. Mittleman, and M. Koch, Polym. Test 26 (2007a), 614.Google Scholar
  15. 15.
    O. Peters, M. Schwerdtfeger, S. Wietzke, S. Sostmann, R. Scheunemann, R. Wilk, R. Holzwarth, M. Koch, and B.M. Fischer, Polym. Test 32 (2013), 932.Google Scholar
  16. 16.
    C. Joerdens, M. Scheller, M. Wichmann, M. Mikulics, K. Wiesauer, and M. Koch, Appl. Opt. 48 (2009), 2037.Google Scholar
  17. 17.
    S. Katzletz, M. Pfleger, H. Phueringer, M. Mikulics, N. Vieweg, O. Peters, B. Scherger, M. Scheller, M. Koch, and K. Wiesauer, Opt. Express 20 (2012), 23025.Google Scholar
  18. 18.
    C. Jansen, S. Wietzke, H. Wang, M. Koch, and G. Zhao, Poylm. Test 30 (2011), 150.Google Scholar
  19. 19.
    D. Zhao, J. Ren, X. Qao, and L. Li, Appl. Opt. Photonics China 9674 (2015), 96741P.Google Scholar
  20. 20.
    S. Wietzke, C. Joerdens, N. Krumbholz, B. Baudrit, M. Bastian, and M. Koch, J. Eur. Opt. Soc. Publ. 2 (2007b), 2.Google Scholar
  21. 21.
    S. Sommer, T. Raidt, B.M. Fischer, F. Katzenberg, J.C. Tiller, and M. Koch, J. Infrared, Millimeter, Terahertz Waves 37 (2015), 189.Google Scholar
  22. 22.
    S. Wietzke, M. Reuter, N. Nestle, E. Klimov, U. Zadok, B.M. Fischer, and M. Koch, J. Infrared, Millimeter, Terahertz Waves 32 (2011a), 952.Google Scholar
  23. 23.
    S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B.M. Fischer, and M. Koch, J. Mol. Struct. 1006 (2011b), 41.Google Scholar
  24. 24.
    H. Hoshina, S. Ishii, S. Yamamoto, Y. Morisawa, H. Satu, T. Uchiyama, Y. Ozaki, and C. Otani, IEEE Trans. Terahertz Sci. Technol. 3 (2013), 248.Google Scholar
  25. 25.
    S. Wietzke, C. Jansen, T. Jung, M. Reuter, B. Baudrit, M. Bastian, S. Chatterjee, and M. Koch, Opt. Express 17 (2009), 19006.Google Scholar
  26. 26.
    V. Hoffmann, W. Frank, and W. Zeil, Kolloid-Zeitschrift 241 (1970), 1044.Google Scholar
  27. 27.
    M. Avrami, J. Chem. Phys. 7 (1939), 1103.Google Scholar
  28. 28.
    N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Goebel, and M. Schell, J. Infrared, Millimeter, Terahertz Waves 35 (2014), 823.Google Scholar
  29. 29.
    P.U. Jepsen, D.G. Cooke, and M. Koch, Laser Photonics Rev. 5 (2011), 124.Google Scholar
  30. 30.
    M. Scheller, Journal of Infrared, Millimeter and Terahertz Waves 35 (2014), 638.Google Scholar
  31. 31.
    S.A. Jabarin, J. Appl. Polym. Sci. 34 (1987), 85.Google Scholar
  32. 32.
    S.A. Jabarin, J. Appl. Polym. Sci. 34 (1987), 97.Google Scholar
  33. 33.
    N.W. Hayes, G. Beamson, D.T. Clark, D.S.-L. Law, and R. Raval, Surf. Interfac Anal. 24 (1996), 723.Google Scholar
  34. 34.
    Y. Long, R.A. Shanks, and Z.H. Stachurski, Prog. Polym. Sci. 20 (1995), 651.Google Scholar
  35. 35.
    G.W. Ehrenstein, G. Riedel, and P. Trawiel, Thermal analysis of plastics, Carl Hanser Verlag, Munich, 2004.Google Scholar
  36. 36.
    W. Frank and D. Knaupp, Berichte der Bunsengesellschaft für Phys. Chemie 79 (1975), 1041.Google Scholar
  37. 37.
    W.F. Frank, W. Strohmeier, and M. Hallensleben, Polymer (Guildf.) 22 (1981), 615.Google Scholar
  38. 38.
    R.M.R. Wellen and M.S. Rabello, J. Mater. Sci. 40 (2005), 6099.Google Scholar
  39. 39.
    M. Rabello and J. White, Polymer (Guildf). 42 (1997), 9423.Google Scholar
  40. 40.
    X. Lu and J. Hay, Polymer (Guildf). 42 (2001), 9423.Google Scholar
  41. 41.
    S. Liu, Y. Yu, Y. Cui, H. Zhang, and Z. Mo, J. Appl. Polym. Sci. 70 (1998), 2731.Google Scholar
  42. 42.
    B. Wunderlich, Thermal analysis of polymeric materials, Springer, Berlin, 2005.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.French-German Research Institute of Saint-Louis ISLSaint-LouisFrance
  2. 2.Department of Physics and Materials Science CenterPhilipps University MarburgMarburgGermany

Personalised recommendations