Advertisement

Decrease in Terahertz Conductivity of Graphene Under Electron Beam Irradiations

  • Xiaodong Feng
  • Min HuEmail author
  • Zhuocheng Zhang
  • Sen Gong
  • Jun Zhou
  • Renbin Zhong
  • Diwei Liu
  • Zhenhua Wu
  • Tao Zhao
  • Chao Zhang
  • Shenggang Liu
Article
  • 50 Downloads

Abstract

Electron beam (e-beam) irradiations are often involved for characterizing graphene-based terahertz (THz) devices or realizing graphene surface plasmons. Here, based on THz time-domain spectroscopy (TDS) and two-dimensional scanning system, the time dependence and the in situ mapping images of changed THz conductivity of graphene induced by e-beam irradiations are studied. The change in THz signals with irradiation indicates a decrease in the THz conductivity as a result of electron doping in graphene through irradiation. And the spatial imaging maps of the decreased THz conductivity reveal diverse electron doping speeds in graphene during different current e-beam irradiations. Additionally, different theoretical doping models are given for explanations of the imaging maps and the calculated results by doping models are in good accordance with the experimental results. Our findings are of significance for understanding the change in THz conductivity and carrier transport of graphene under e-beam irradiations.

Keywords

Graphene Terahertz conductivity E-beam irradiation Terahertz spectroscopy 

Notes

Funding Information

This work was supported by the National Key Research and Development Program of China (No.2017YFA0701000); the National Basic Research Program (No.2014CB339801); the Natural Science Foundation of China (61701084); the Fundamental Research Funds for the Central Universities (ZYGX2016KYQD113); and the National University Found (ZYGX2015KYQD064).

References

  1. 1.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films”. Science 306.5696, 666–669 (2004).CrossRefGoogle Scholar
  2. 2.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene”. Nature 438(7065), 197 (2005).CrossRefGoogle Scholar
  3. 3.
    R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene”. Science 320(5881), 1308–1308 (2008).CrossRefGoogle Scholar
  4. 4.
    H. Jian-rong, L. Jiu-sheng, and Q. Guo-hua, “Graphene-Based\Waveguide Terahertz Wave Attenuator”. Journal of Infrared, Millimeter, and Terahertz Waves, 37(7), 668–675 (2016).CrossRefGoogle Scholar
  5. 5.
    E. Kaya, N. Kakenov, H. Altan, C. Kocabas, and O. Esenturk, “Multilayer Graphene Broadband Terahertz Modulators with Flexible Substrate”. Journal of Infrared, Millimeter, and Terahertz Waves, 39(5), 483–491 (2018).CrossRefGoogle Scholar
  6. 6.
    M. Rahm, J. S. Li, and W. J. Padilla, “THz wave modulators: a brief review on different modulation techniques”. Journal of Infrared, Millimeter, and Terahertz Waves, 34(1), 1–27 (2013).CrossRefGoogle Scholar
  7. 7.
    M. Tamagnone, C. Moldovan, J. M. Poumirol, A. B. Kuzmenko, A. M. Ionescu, J. R. Mosig, and J. Perruisseau-Carrier, “Near optimal graphene terahertz non-reciprocal isolator”. Nature communications 7, 11216 (2016).CrossRefGoogle Scholar
  8. 8.
    K. C. Zhang, X. X., Chen, C. J., Sheng, K. J., Ooi, L. K., Ang LK, and Yuan XS, Transition radiation from graphene plasmons by a bunch beam in the terahertz regime. Optics Express, 25(17), 20477–20485 (2017).CrossRefGoogle Scholar
  9. 9.
    T. Zhao, M. Hu, R. Zhong, S. Gong, C. Zhang, and S. Liu, “Cherenkov terahertz radiation from graphene surface plasmon polaritons excited by an electron beam”. Applied Physics Letters 110(23), 231102 (2017).CrossRefGoogle Scholar
  10. 10.
    S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, T. Zhao, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam”. Applied Physics Letters, 104(20), 201104 (2014).CrossRefGoogle Scholar
  11. 11.
    H. Liu, Y. Liu, and D. Zhu, “Chemical doping of graphene”. Journal of materials chemistry, 21(10), 3335–3345 (2011).CrossRefGoogle Scholar
  12. 12.
    Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene”. Nature 459(7248), 820 (2009).CrossRefGoogle Scholar
  13. 13.
    H. D. Song, Y. F. Wu, X. Yang, Z. Ren, X. Ke, M. Kurttepeli, G. V. Tendeloo, D. Liu, H. Wu, B. Yan, X. Wu, C. Duan, G. Han, Z. Liao, and D. Yu, “Asymmetric Modulation on Exchange Field in a Graphene/BiFeO3 Heterostructure by External Magnetic Field”. Nano letters 18 (4), 2435 (2018).CrossRefGoogle Scholar
  14. 14.
    A. J. Frenzel, C. H. Lui, W. Fang, N. L. Nair, P. K. Herring, P. Jarillo-Herrero, J. Kong, N. Gedik, “Observation of suppressed terahertz absorption in photoexcited graphene”. Applied Physics Letters 102(11), 113111 (2013).CrossRefGoogle Scholar
  15. 15.
    J. D. Buron, F. Pizzocchero, P. U. Jepsen, D. H. Petersen, J. M. Caridad, B. S. Jessen, T. J. Booth, and P. Bøggild, “Graphene mobility mapping”. Scientific Reports 5, 12305 (2015).CrossRefGoogle Scholar
  16. 16.
    J. D .Buron, F. Pizzocchero, B. S. Jessen, T. J. Booth, P. F. Nielsen, O. Hansen, M. Hilke, E. Whiteway, P. U. Jepsen, P. Bøggild, D. H. Petersen, “Electrically continuous graphene from single crystal copper verified by terahertz conductance spectroscopy and micro four-point probe”. Nano letters, 14(11), 6348–6355 (2014).CrossRefGoogle Scholar
  17. 17.
    D. Teweldebrhan, and A. A. Balandin, “Modification of graphene properties due to electron-beam irradiation”. Applied Physics Letters 94(1), 013101 (2009).CrossRefGoogle Scholar
  18. 18.
    F. Withers, T. H. Bointon, M. Dubois, S. Russo, and M. F. Craciun, “Nanopatterning of fluorinated graphene by electron beam irradiation”. Nano letters 11(9), 3912–3916 (2011).CrossRefGoogle Scholar
  19. 19.
    I. Childres, L. A. Jauregui, M. Foxe, J. Tian, R. Jalilian, I. Jovanovic, and Y. P. Chen, “Effect of electron-beam irradiation on graphene field effect devices”. Applied Physics Letters 97(17), 173109 (2010).CrossRefGoogle Scholar
  20. 20.
    V. Stará, P. Procházka, D. Mareček, T. Šikola, and J. Čechal, “Ambipolar remote graphene doping by low-energy electron beam irradiation”. Nanoscale, 10(37), 17520–17524 (2018).CrossRefGoogle Scholar
  21. 21.
    Y. Zhou, J. Jadwiszczak, D. Keane, Y. Chen, D. Yu, and H. Zhang, “Programmable graphene doping via electron beam irradiation”. Nanoscale, 9(25), 8657–8664 (2017).CrossRefGoogle Scholar
  22. 22.
    X. Yu, Y. Shen, T. Liu, T. T. Wu, and Q. J. Wang, “Photocurrent generation in lateral graphene pn junction created by electron-beam irradiation”. Scientific reports, 5, 12014 (2015).CrossRefGoogle Scholar
  23. 23.
    X. Feng, M. Hu, J. Zhou, and S. Liu, “Calculation and Study of Graphene Conductivity Based on Terahertz Spectroscopy”. Journal of Infrared, Millimeter, and Terahertz Waves 38(7), 874–884 (2017).CrossRefGoogle Scholar
  24. 24.
    G. Jnawali, Y. Rao, H. Yan, and T. F. Heinz, “Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation”. Nano letters, 13(2), 524–530 (2013).CrossRefGoogle Scholar
  25. 25.
    I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J. H. Son, “Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy”. Nano letters, 12(2), 551–555 (2012).CrossRefGoogle Scholar
  26. 26.
    S. F. Shi, T. T. Tang, B. Zeng, L. Ju, Q. Zhou, A. Zettl, and F. Wang, Controlling graphene ultrafast hot carrier response from metal-like to semiconductor-like by electrostatic gating. Nano letters, 14(3), 1578–1582 (2014).CrossRefGoogle Scholar
  27. 27.
    S. M. Hornett, R. I. Stantchev, M. Z. Vardaki, C. Beckerleg, and E. Hendry, “Subwavelength Terahertz Imaging of Graphene Photoconductivity”. Nano letters, 16(11), 7019–7024 (2016).CrossRefGoogle Scholar
  28. 28.
    C. J. Docherty, C. T. Lin, H. J. Joyce, R. J. Nicholas, L. M. Herz, L. J. Li, and M. B. Johnston, “Extreme sensitivity of graphene photoconductivity to environmental gases”. Nature communications 3, 1228 (2012).CrossRefGoogle Scholar
  29. 29.
    W. H. Lee, J. W. Suk, J. Lee, Y. Hao, J. Park, J. W. Yang, H. Ha, S. Murali, H. Chou, D. Akinwande, K. S. Kim, R. S, and Ruoff RS, Simultaneous transfer and doping of CVD-grown graphene by fluoropolymer for transparent conductive films on plastic. Acs Nano 6(2), 1284–1290 (2012).CrossRefGoogle Scholar
  30. 30.
    B. W. Smith, E. L. David, Electron irradiation effects in single wall carbon nanotubes. Journal of Applied Physics 90.7, 3509–3515 (2001).CrossRefGoogle Scholar
  31. 31.
    R. E. Pattle, Diffusion from an instantaneous point source with a concentration-dependent coefficient. The Quarterly Journal of Mechanics and Applied Mathematics 12(4), 407–409 (1959).MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    P. Kathirgamanathan, R. McKibbin, and R. I. McLachlan, “Source term estimation of pollution from an instantaneous point source”. Res. Lett. Inf. Math. Sci. 3, 59–67 (2002).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xiaodong Feng
    • 1
    • 2
  • Min Hu
    • 1
    • 2
    Email author
  • Zhuocheng Zhang
    • 1
    • 2
  • Sen Gong
    • 1
    • 2
  • Jun Zhou
    • 1
    • 2
  • Renbin Zhong
    • 1
    • 2
  • Diwei Liu
    • 1
    • 2
  • Zhenhua Wu
    • 1
    • 2
  • Tao Zhao
    • 1
    • 2
  • Chao Zhang
    • 2
    • 3
  • Shenggang Liu
    • 1
    • 2
  1. 1.Terahertz Research Center, School of Electronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Key Laboratory of Terahertz TechnologyMinistry of EducationChengduChina
  3. 3.School of Physics and Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongongAustralia

Personalised recommendations