Detection of Weak Terahertz Pulsed Signals Using Kinetic Inductance Detectors

  • Gizem Soylu
  • Federico Sanjuan
  • Emilie Hérault
  • Jean-François Roux
  • Florence Levy-Bertrand
  • Martino Calvo
  • Alessandro Monfardini
  • Jean-Louis Coutaz


We report on the detection of weak terahertz pulsed signals, generated by either a commercial photoconductive antenna or an electro-optic crystal pumped by femtosecond laser pulses, using high-sensitive kinetic inductance detectors. Average powers as low as 0.1 fW have been recorded. We observe an unexpected constant signal when the bias voltage of the photoconductive antenna is strongly reduced.


Terahertz Kinetic inductance detector Photoconductive antenna Optical rectification 



We thank Drs. Christopher Bauerle and Giorgos Georgiou, both at Institute Néel in Grenoble, France, for putting at our disposal the fiber femtosecond laser during this work.


This study was funded by the French Research Agency (ANR) through the LabEx FOCUS ANR-11-LABX-0013 project.


  1. 1.
    I. Freund and M. Deutsch. Opt. Lett. 11, 94 (1986).CrossRefGoogle Scholar
  2. 2.
    J. Extermann, L. Bonacina, E. Cuña, C. Kasparian, Y. Mugnier, T. Feurer, and J.-P. Wolf. Opt. Express 17, 15342 (2009).CrossRefGoogle Scholar
  3. 3.
    F. Sanjuan, G. Gaborit and J.-L. Coutaz. Sci. Rep. 8, 13492 (2018).CrossRefGoogle Scholar
  4. 4.
    Second Harmonic Generation Imaging, edited by F. S. Pavone and P. J. Campagnola. CRC Press (2013).Google Scholar
  5. 5.
    P. Theer, W. Denk, M. Sheves, A. Lewis, and P. B. Detwiler. Biophys. J. 100, 232 (2011).CrossRefGoogle Scholar
  6. 6.
    M. Naftaly and R. Dudley. Opt. Lett. 34, 1213 (2009).CrossRefGoogle Scholar
  7. 7.
    F. Sizov. Opto-Electron. Rev. 18, 10 (2010).Google Scholar
  8. 8.
    A. Rogalski and F. Sizov. Opto-Electron. Rev. 19, 346 (2011).CrossRefGoogle Scholar
  9. 9.
    M. Kenyon, P. K. Day, C. M. Bradford, J. J. Bock, and H. G. Leduc, Nucl. Instrum. Methods Phys. Res. A 559, 456 (2006).CrossRefGoogle Scholar
  10. 10.
    R. M. J. Janssen, A. Endo, P. J. de Visser, T. M. Klapwijk, and J. J. A. Baselmans, Appl. Phys. Lett. 105, 193504 (2014).CrossRefGoogle Scholar
  11. 11.
    J. Grzyb and U. Pfeiffer. J Infrared Milli Terahz Waves 36, 998 (2015).CrossRefGoogle Scholar
  12. 12.
    F. Simoens and J. Meilhan. Phil. Trans. R. Soc. A372, 20130111 (2014).CrossRefGoogle Scholar
  13. 13.
    K. Wood, A. Bideaud, S. Doyle, A. Papageorgiou, E. Pascale and S. Rowe, 39th Int. Conf. on Infrared, Millimeter, and THz Waves, Tucson, AZ (14–19 Sept. 2014).Google Scholar
  14. 14.
    A. Monfardini, L. J. Swenson, A. Bideaud, F. X. Désert, S. J. C. Yates, A. Benoit, A. M. Baryshev, J. J. A. Baselmans, S. Doyle, B. Klein, M. Roesch, C. Tucker, P. Ade, M. Calvo, P. Camus, C. Giordano, R. Guesten, C. Hoffmann, S. Leclercq, P. Mauskopf, and K. F. Schuster, A&A 521, 1 (2010).CrossRefGoogle Scholar
  15. 15.
    M. Roesch, A. Benoit, A. Bideaud, N. Boudou, M. Calvo, A. Cruciani, S. Doyle, H. G. Leduc, A. Monfardini, L. Swenson, S. Leclercq, P. Mauskopf and K. F. Schuster, arxiv 1212.4585 (2013).Google Scholar
  16. 16.
    M. Calvo, A. Benoit, A. Catalano, J. Goupy, A. Monfardini, N. Ponthieu, E. Barria, G. Bres, M. Grollier, G. Garde, J.-P. Leggeri, G. Pont, S. Triqueneaux, R. Adam, O. Bourrion, J.-F. Macias-Perez, M. Rebolo, A. Ritacco, J.-P. Scordilis, D. Tourres, C. Vescovi, F.-X. Desert, A. Adane, G. Coiffard, S. Leclercq, S. Doyle, P. Mauskopf, C. Tucker, P. Ade, P. Andre, A. Beelen, B. Belier, A. Bideaud, N. Billot, B. Comis, A. D’Addabbo, C. Kramer, J. Martino, F. Mayet, F. Pajot, E. Pascale, L. Perotto, V. Reveret, L. Rodriguez, G. Savini, K. Schuster, A. Sievers, and R. Zylka. J. Low Temp. Phys. 184, 816 (2016).CrossRefGoogle Scholar
  17. 17.
    F. Sanjuan, G. Gaborit and J.-L. Coutaz, J Infrared Millim Terahertz Waves 39, 378 (2018).CrossRefGoogle Scholar
  18. 18.
    G. Gaborit, J. Oden, J.-F. Roux, J.-L. Coutaz, M. Yamashita, Y. Sasaki and C. Otani, 38th Int. Conf. on Infrared, Millimeter, and THz Waves, Mainz, Germany, (1–6 Sept. 2013).Google Scholar
  19. 19.
    J. J. A. Baselmans, J. Bueno, S. J. C. Yates, O. Yurduseven, N. Llombart, K. Karatsu, A. M. Baryshev, L. Ferrari, A. Endo, D. J. Thoen, P. J. de Visser, R. M. J. Janssen, V. Murugesan, E. F. C. Driessen, G. Coiffard, J. Martin-Pintado, P. Hargrave, and M. Griffin, A&A 601, A89 (2017).CrossRefGoogle Scholar
  20. 20.
    S. Vidal, J. Degert, M. Tondusson, E. Freysz, and J. Oberle. J. Opt. Soc. Am. B 31, 149 (2014).CrossRefGoogle Scholar
  21. 21.
    N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H.-W. Hübers, and M. Koch. Opt. Express 16, 19695 (2008).CrossRefGoogle Scholar
  22. 22.
    A. Krotkus. J. Phys. D: Appl. Phys. 43, 273001 (2010).CrossRefGoogle Scholar
  23. 23.
    A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang D. Bliss, J. Larkin, and M. Alexander. Appl. Phys. Lett. 64, 1324 (1994).CrossRefGoogle Scholar
  24. 24.
    C. T. Que, F. Miyamaru, S. Tanaka, M. Tani and M. Hangyo, Jpn. J. Appl. Phys. 46, 597 (2007).CrossRefGoogle Scholar
  25. 25.
    G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M. B. Johnston, M. Fischer, J. Faist, and T. Dekorsy. Opt. Express 18, 4939 (2010).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.IMEP-LAHC, UMR CNRS 5130University Savoie Mont-BlancLe Bourget du Lac CedexFrance
  2. 2.CNRS/UGA UPR 2940Institut NéelGrenoble Cedex 9France

Personalised recommendations