A D-Band Rectangular Waveguide-to-Coplanar Waveguide Transition Using Wire Bonding Probe

  • Yunfeng Dong
  • Vitaliy Zhurbenko
  • Peter J. Hanberg
  • Tom K. Johansen


This paper presents a rectangular waveguide-to-coplanar waveguide (CPW) transition at D-band (110–170 GHz) using wire bonding probe. A conventional CPW is designed and fabricated based on both quartz and glass substrates for estimating the losses at D-band and testing the fabrication processes. Two transition prototypes at D-band using E-plane probe and wire bonding probe are designed, fabricated, and measured in a back-to-back configuration. The system packaging approaches and scattering parameters of the transition prototypes are compared. For both on-chip and carrier substrate approaches, chips can be tested individually before packaged into a system and extra connections are not required. The fabricated rectangular waveguide-to-CPW transition at D-band using wire bonding probe in a back-to-back configuration exhibits a bandwidth of 56.3 GHz ranging from 110 to 166.3 GHz in which the return loss is better than 10 dB with an associated insertion loss of 2 dB. Compared with the fabricated rectangular waveguide-to-CPW transition using E-plane probe, an equivalent bandwidth is achieved at D-band while the system packaging approaches are more versatile and compact for the proposed transition using wire bonding probe.


Coplanar waveguide (CPW) E-plane probe Packaging Rectangular waveguide Wideband transition Wire bonding probe 



The authors would like to thank M. Nielsen, J. Lauridsen, and J. N. Mortensen at Technical University of Denmark for machining the packaging structures.


  1. 1.
    T. Tajima, H. J. Song, and M. Yaita. Design and analysis of LTCC-integrated planar microstrip-to-waveguide transition at 300 GHz, IEEE Trans. Microw. Theory Techn. 64(1), 106–114, Jan. 2016.Google Scholar
  2. 2.
    B. Zhang and H. Zirath. Metallic 3-D printed rectangular waveguides for millimeter-wave applications, IEEE Trans. Compon. Packag. Manuf. Technol. 6(5), 796–804, May. 2016.Google Scholar
  3. 3.
    J. M. Oliver, J. M. Rollin, K. Vanhille, and S. A. Raman. W-band micromachined 3-D cavity-backed patch antenna array with integrated diode detector, IEEE Trans. Microw. Theory Techn. 60(2), 284–292, Feb. 2012.Google Scholar
  4. 4.
    M. Moallem, J. East, and K. Sarabandi. A broadband, micromachined rectangular waveguide to cavity-backed coplanar waveguide transition using impedance-taper technique, IEEE Trans. THz Sci. Technol. 4(1), 49–55, Jan. 2014.Google Scholar
  5. 5.
    N. Vahabisani and M. Daneshmand. Monolithic wafer-level rectangular waveguide and its transition to coplanar waveguide line using a simplified 3-D fabrication process, IEEE Trans. Compon. Packag. Manuf. Technol. 4(1), 168–176 Jan. 2014.Google Scholar
  6. 6.
    M. Vahidpour and K. Sarabandi. 2.5D micromachined 240 GHz cavity-backed coplanar waveguide to rectangular waveguide transition, IEEE Trans. THz Sci. Technol. 2(3), 315–322, May. 2012.Google Scholar
  7. 7.
    T. Merkle, R. Götzen, J. Y. Choi, and S. Koch. Polymer multichip module process using 3-D printing technologies for D-band applications, IEEE Trans. Microw. Theory Techn. 63(2), 481–493, Feb. 2015.Google Scholar
  8. 8.
    T. Tajima, H. J. Song, H. Matsuzaki, and M. Yaita. LTCC-integrated H-plane bends for THz antenna-in-package solution, IEEE Microw. Compon. Lett. 27(5), 440–442, May. 2017.Google Scholar
  9. 9.
    H. J. Song, H. Matsuzaki, and M. Yaita. Sub-millimeter and terahertz-wave packaging for large chip-width MMICs, IEEE Microw. Compon. Lett. 26(6), 422–424, June. 2016.Google Scholar
  10. 10.
    M. Varonen, L. Samoska, A. Fung, S. Padmanabhan, P. Kangaslahti, R. Lai, S. Sarkozy, M. Soria, H. Owen, T. Reck, G. Chattopadhyay, P. V. Larkoski, and T. Gaier. A WR4 amplifier module chain with an 87 K noise temperature at 228 GHz, IEEE Microw. Compon. Lett. 25(1), 58–60, Jan. 2015.Google Scholar
  11. 11.
    M. Kärkkäinen, M. Kantanen, S. C. Bert, M. Varonen, R. Weber, A. Leuther, M. S. Eggebert, A. Alanne, P. Jukkala, T. Närhi, and K. A. I. Halonen. MHEMT G-band low-noise amplifiers, IEEE Trans. THz Sci. Technol. 4(4), 459–468, July. 2014.Google Scholar
  12. 12.
    V. Hurm, R. Weber, A. Tessmann, H. Massler, A. Leuther, M. Kuri, M. Riessle, H. P. Stulz, M. Zink, M. Schlechtweg, O. Ambacher, and T. Närhi. A 243 GHz LNA module based on mHEMT MMICs with integrated waveguide transitions, IEEE Microw. Compon. Lett. 23(9), 486–488, Sept. 2013.Google Scholar
  13. 13.
    J. Stenarson, T. N. T. Do, H. Zhao, P. J. Sobis, A. Y. Tang, K. Yhland, and J. Stake. Sensitivity analysis of TRL calibration in waveguide integrated membrane circuits, IEEE Trans. THz Sci. Technol. 3(5), 558–565, Sept. 2013.Google Scholar
  14. 14.
    E. S. Li, G. X. Tong, and D. C. Niu. Full W-band waveguide-to-microstrip transition with new E-plane probe, IEEE Microw. Compon. Lett. 23(1), 4–6, Jan. 2013.Google Scholar
  15. 15.
    L. A. Samoska. An overview of solid-state integrated circuit amplifiers in the submillimeter-wave and THz regime, IEEE Trans. THz Sci. Technol. 1(1), 9–24, Sept. 2011.Google Scholar
  16. 16.
    O. Donadio, K. Elgaid, and R. Appleby. Waveguide-to-microstrip transition at G-band using elevated E-plane probe, Electron. Lett. 47(2), 115–116, Jan. 2011.Google Scholar
  17. 17.
    Y. Lee, J. P. Becker, J. R. East, and L. P. B. Katehi. Fully micromachined finite-ground coplanar line-to-waveguide transitions for W-band applications, IEEE Trans. Microw. Theory Techn. 52(3), 1001–1007, Mar. 2004.Google Scholar
  18. 18.
    S. Jameson and E. Socher. A wide-band CMOS to waveguide transition at mm-wave frequencies with wire-bonds, IEEE Trans. Microw. Theory Techn. 63(9), 2741–2750, 2015.Google Scholar
  19. 19.
    K. Eriksson, P. J. Sobis, S. E. Gunnarsson, J. Hanning, H. Zirath, InP DHBT amplifier modules operating between 150–300 GHz using membrane technology, IEEE Trans. Microw. Theory Techn. 63(2), 433–440, Feb. 2015.Google Scholar
  20. 20.
    Y. Dong, T. K. Johansen, V. Zhurbenko, and P. J. Hanberg. Rectangular waveguide-to-coplanar waveguide transitions at U-band using E-plane probe and wire bonding. In Proc. 46th Eur. Microw. Conf. (EuMC), 5–8, Oct. 2016.Google Scholar
  21. 21.
    M. Tsuji, H. Shigesawa, and A. A. Oliner. New interesting leakage behavior on coplanar waveguides of finite and infinite widths, IEEE Trans. Microw. Theory Techn. 39(12), 2130–2137, Dec. 1991.Google Scholar
  22. 22.
    F. Schnieder, T. Tischler, and W. Heinrich. Modeling dispersion and radiation characteristics of conductor-backed CPW with finite ground width, IEEE Trans. Microw. Theory Techn. 51(1), 137–143, Jan. 2003.Google Scholar
  23. 23.
    A. Sain and K. L. Melde. Impact of ground via placement in grounded coplanar waveguide interconnects, IEEE Trans. Compon. Packag. Manuf. Technol. 6(1), 136–144, Jan. 2016.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical Engineering, Electromagnetic Systems GroupTechnical University of DenmarkKgs. LyngbyDenmark
  2. 2.National Center for Micro- and NanofabricationTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations