Advertisement

Performance Comparison of Time-Domain Terahertz, Multi-terahertz, and Fourier Transform Infrared Spectroscopies

  • V. Skoromets
  • H. Němec
  • V. Goian
  • S. Kamba
  • P. Kužel
Article
  • 151 Downloads

Abstract

Time-domain terahertz (THz), multi-terahertz, and Fourier transform infrared (FTIR) spectroscopies access partly similar and partly complementary spectral ranges of the far-infrared region. We introduce an approach enabling a direct comparison of their performance in terms of the signal-to-noise ratio (SNR) and dynamic range (DR), normalized by the time required to obtain one useful data point in the frequency domain. Several configurations of a commercial FTIR spectrometer are compared to our various custom-built time-domain systems (including femtosecond oscillator and amplifier-based THz and multi-THz setups). We find that the normalized SNR of the FTIR systems is generally better than that of the time-domain setups, which is attributed to the noise of the femtosecond laser output compared to the black body radiation source. On the other hand, the coherent detection of the THz field in the time-domain systems leads to a dramatically better normalized DR than in the FTIR configurations.

Keywords

THz FTIR Signal-to-noise ratio Dynamic range 

Notes

Funding Information

This work is supported by the Operational Programme Research, Development and Education financed by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports (Project No. SOLID21- CZ.02.1.01/0.0/0.0/16_019/0000760). PK and HN also acknowledge the financial support by the Czech Science Foundation (Project No. 17-03662S).

References

  1. 1.
    K.-E. Peiponen, J. A. Zeitler, M. Kuwata-Gonokami (eds.), Terahertz Spectroscopy and Imaging (Springer 2013).Google Scholar
  2. 2.
    J. Hlinka, T. Ostapchuk, D. Nuzhnyy, J. Petzelt, P. Kužel, C. Kadlec, P. Vaněk, I. Ponomareva, and L. Bellaiche, Phys. Rev. Lett. 101, 167402 (2008).CrossRefGoogle Scholar
  3. 3.
    A. Pimenov, A. A. Mukhin, V. Y. Ivanov, V. D. Travkin, A. M. Balbashov, and A. Loidl, Nat. Phys. 2, 97 (2006).CrossRefGoogle Scholar
  4. 4.
    N. Kida, Y. Takahashi, J. S. Lee, R. Shimano, Y. Yamasaki, Y. Kaneko, S. Miyahara, N. Furukawa, T. Arima, and Y. Tokura, J. Opt. Soc. Am. B 26, A35 (2009).CrossRefGoogle Scholar
  5. 5.
    M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, Phys. Rev. B 62, 15764 (2000).CrossRefGoogle Scholar
  6. 6.
    H.-K. Nienhuys and V. Sundström, Appl. Phys. Lett. 87, 012101 (2005).CrossRefGoogle Scholar
  7. 7.
    P. Kužel and H. Němec, J. Phys. D – Appl. Phys. 47, 374005 (2014).CrossRefGoogle Scholar
  8. 8.
    M. Beck, I. Rousseau, M. Klammer, P. Leiderer, M. Mittendorff, S. Winnerl, M. Helm, G. N. Goltsman, and J. Demsar, Phys. Rev. Lett. 110, 267003 (2013).CrossRefGoogle Scholar
  9. 9.
    J. E. Boyd, A. Briskman. V. L. Colvin, and D. M. Mittleman, Phys. Rev. Lett 87, 147401 (2001).CrossRefGoogle Scholar
  10. 10.
    B. P. Gorshunov, V. I. Torgashev, E. S. Zhukova, V. G. Thomas, M. A. Belyanchikov, C. Kadlec, F. Kadlec, M. Savinov, T. Ostapchuk, J. Petzelt, J. Prokleška, P. V. Tomas, E. V. Pestrjakov, D. A. Fursenko, G. S. Shakurov, A. S. Prokhorov, V. S. Gorelik, L. S. Kadyrov, V. V. Uskov, R. K. Kremer, and M. Dressel, Nat. Commun. 7, 12842 (2016).CrossRefGoogle Scholar
  11. 11.
    R. Ulbricht, E. Hendry, J. Shan, T.F. Heinz, and M. Bonn, Rev. Mod. Phys. 83, 543 (2011).CrossRefGoogle Scholar
  12. 12.
    C. Kübler, R. Huber, S. Tübel, and A. Leitenstorfer, Appl. Phys. Lett. 85, 3360 (2004).CrossRefGoogle Scholar
  13. 13.
    P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, J. Appl. Phys. 89, 2357 (2001).CrossRefGoogle Scholar
  14. 14.
    M. Naftaly and R. Dudley, Opt. Lett. 34, 1213 (2009).CrossRefGoogle Scholar
  15. 15.
    T. Wang, K. Iwaszczuk, E. A. Wrisberg, E. V. Denning, and P. Uhd Jepsen, J. Infrared Milli. Terahz. Waves 37, 592 (2016).CrossRefGoogle Scholar
  16. 16.
    P. Uhd Jepsen and B. M. Fischer, Opt. Lett. 30, 29 (2005).CrossRefGoogle Scholar
  17. 17.
    Note that in the case of TDS these n spectral values consist of n/2 real and n/2 imaginary values (or n/2 independent amplitude and phase values). In contrast, in the case of FTIR the phase does not bring any information about the sample: its values are implied by the symmetry of the interferogram and by electronic filtering of the signal. Information is then carried only by n/2 independent spectral power values.Google Scholar
  18. 18.
    In most instruments, the acquisition involves blind intervals such as delay line return, during which no useful data are acquired. In order to keep our reasoning as simple as possible, we did not consider such intervals in the definitions of per-scan measurement time etc. Nevertheless, such intervals are automatically reflected in all subsequent formulae when we replace u by the scanning velocity defined as the ratio of nΔt to the total acquisition time needed for a single complete scan period (including the blind parts).Google Scholar
  19. 19.
    J. S. Bendat and S. G. Piersol, Random Data analysis and Measurement Procedures (Wiley, 2000).Google Scholar
  20. 20.
    P. Kužel, H. Němec, F. Kadlec, and C. Kadlec, Opt. Express 18, 15338 (2010).CrossRefGoogle Scholar
  21. 21.
    M. D. Thomson, M. Kress, T. Löffler, H. G. Roskos, Laser & Photon. Rev. 1, 349 (2007).CrossRefGoogle Scholar
  22. 22.
    N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, Appl. Phys. Lett. 92, 011131 (2008).CrossRefGoogle Scholar
  23. 23.
    X. Lu and X.-C. Zhang, Appl. Phys. Lett. 98, 151111 (2011).CrossRefGoogle Scholar
  24. 24.
    It would be theoretically possible to increase the DR of the spectrometer equipped with the liquid He-cooled bolometer by inserting a filter into the beam path for a high-signal measurement (i.e. for any reference measurement) and remove it for a low-signal measurement (i.e.. for any sample measurement). However, this is quite problematic since, using this scheme, the reference would be always measured in different conditions than the sample and quantitative and reproducible determination of the spectra over a broad spectral range and without artifacts would be hardly achieved. This option is not used in practice and the devices are not equipped with such a possibility.Google Scholar
  25. 25.
    S. Glinšek, D. Nuzhnyy, J. Petzelt, B. Malič, S. Kamba, V. Bovtun, M. Kempa, V. Skoromets, P. Kužel, I. Gregora, and M. Kosec, J. Appl. Phys. 111, 104101 (2012).CrossRefGoogle Scholar
  26. 26.
    C. Kadlec, F. Kadlec, H. Němec, P. Kužel, J. Schubert, and G. Panaitov, J. Phys.: Cond. Matter. 21, 115902 (2009).Google Scholar
  27. 27.
    K. L. Krewer, Z. Mics, J. Arabski, G. Schmerber, E. Beaurepaire, M. Bonn, and D. Turchinovich, Opt. Lett. 43, 447 (2018).CrossRefGoogle Scholar
  28. 28.
    F. Junginger, A. Sell, O. Schubert, B. Mayer, D. Brida, M. Marangoni, G. Cerullo, A. Leitenstorfer, and R. Huber, Opt. Lett. 35, 2465 (2010).CrossRefGoogle Scholar
  29. 29.
    T. Seifert et al., Nat. Photon. 10, 483 (2016).CrossRefGoogle Scholar
  30. 30.
    Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, App. Phys. Lett. 83, 3117 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of PhysicsCzech Academy of SciencesPrague 8Czech Republic

Personalised recommendations