Advertisement

Contactless Transient THz Temperature Imaging by Thermo-transmittance Technique on Semi-transparent Materials

  • M. Bensalem
  • A. Sommier
  • J. C. Mindeguia
  • J. C. Batsale
  • Luis-David Patino-Lope
  • C. PradereEmail author
Article
  • 107 Downloads

Abstract

THz waves have shown to be effective for several applications, such as security, non-destructive testing, and water content monitoring for porous materials and food products. This study aims to highlight the use of THz radiation to measure temperature variations of thin insulating materials opaque in the visible or IR range (PVC, PTFE, PMMA, and wood) by using a spectral thermo-transmittance technique. THz wave optical transmittance in materials show high sensitivity to temperature variations. The goal of this paper is to demonstrate the transient temperature gradient dependence of THz transmitted signals inside materials to develop a new contactless method for measuring temperature of thin materials semi-transparent to THz radiation. The principle is based on synchronous detection, using an infrared camera coupled with a THz to infrared thermal converter (TTC) with modulated millimeter-scale waves (2.7 mm). The results show a correlation between the transient temperature and the optical transmittance coefficient. Several types of samples semi-transparent to THz radiation are tested, and the corresponding thermo-transmittance coefficients as reported for PVC, PTFE, PMMA, and wood are respectively 0.805, 0.395, 0.640, and 1.177 K−1 m−1.

Keywords

Contactless transient thermal imaging Thermo-transmittance THz imaging Semi-transparent materials TTC Transient temperature Image processing 

Nomenclature

f

acquisition frequency (Hz)

IT

integration time (μs)

x, y, z

space dimensions

ρ

density (kg m−3)

Cp

specific heat (J kg−1 K−1)

k

thermal conductivity (W m−1 K−1)

e

thickness (m)

H

convection coefficient (W m−2 K−1)

Bi

Biot number (dimensionless)

Tini

initial temperature (K)

Tfin

final temperature (K)

t

time (s)

Δx, Δy, Δz, Δt

discretization steps of dimensions x, y, z, and time in (m) and (s), respectively

A

raw signal (DL)

S1,2,3,4

signal calculated at quarter of period (DL)

Nppp

number of points per period

U

space base in SVD

S

singular value matrix

V

time base in SVD

S*

truncated singular value matrix

r

singular values

r*

truncated singular values

I

transmitted signal (amplitude) (DL)

I0

emitted signal (amplitude) (DL)

μ

absorption coefficient of solid (m−1)

λ

wavelength (m)

κ

thermo-transmittance coefficient (K−1 m−1)

Γ

thermo-transmittance (dimensionless)

ls

solid thickness (m)

R2

correlation coefficient (dimensionless)

Tmes

temperature measured by thermocouple (K)

Tmoy

mean temperature of field (K)

PVC

polyvinyl chloride

PMMA

poly(methyl methacrylate)

PTFE

polytetrafluoroethylene

SVD

singular value decomposition

ROI

region of interest

POM

polyoxymethylene

References

  1. 1.
    Jeffrey White and David Zimdars. Time Domain Terahertz Non Destructive Evaluation of Water Intrusion in Composites and Corrosion under Insulation. © 2007 Optical Society of America.Google Scholar
  2. 2.
    Christian Jansen, Steffen Wietzke, Ole Peters, Maik Scheller, Nico Vieweg, Mohammed Salhi, Norman Krumbholz, Christian Jördens, Thomas Hochrein and Martin Koch. Terahertz imaging: application and perspectives. © 2007 Optical Society of America. Applied Optics/ vol. 49, NO, 19/1 July 2010.Google Scholar
  3. 3.
    J. Beckmann, He. Richter, U. Zscherpel, U. Ewert, J. Weinzierl, L.-P. Schmidt, F. Rutz, M. Koch, H. Richter, H.-W. Hübers. Imaging Capability of Terahertz and Millimeter-Wave Instrumentations for NDT of Polymer Materials. ECNDT 2006 - We.2.8.1.Google Scholar
  4. 4.
    D. Banerjee, W. von Spiege, M. D. Thomson, S. Schabel, H.G. Roskos. Diagnosing water content in paper by terahertz radiation. 9 June 2008 / Vol. 16, No. 12 / OPTICS EXPRESS 9060.CrossRefGoogle Scholar
  5. 5.
    Anton S. Skry, J. Bianca Jackson, Michael I. Bakunov, Michel Menu, and Gerard A. Mourou. Terahertz time-domain imaging of hidden defects in wooden artworks: application to a Russian icon painting”. © 2014 Optical Society of America. 20 February 2014.Google Scholar
  6. 6.
    M. Bensalem, A. Sommier, J. C. Mindeguia, J. C. Batsale and C. Pradere. Terahertz Measurement of the Water Content Distribution in Wood Materials. J Infrared Milli Terahz Waves, Nov 2017.  https://doi.org/10.1007/s10762-017-0441-7.CrossRefGoogle Scholar
  7. 7.
    C. Pradere, M. Ryu, A. Sommier, M. Romano, A. Kusiak, J. L. Battaglia, J. C. Batsale, and J. Morikawa. Non-contact temperature field measurement of solids by infrared multispectral thermotransmittance. Journal of Applied Physics 121, 085102 (2017); doi:  https://doi.org/10.1063/1.4976209.CrossRefGoogle Scholar
  8. 8.
    C. Pradere, J. P. Caumes, S. BenKhemis, G. Pernot, E. Palomo, S. Dilhaire and J. C. Batsale. Thermoreflectance temperature measurement with millimeter wave. Review of scientific instruments 85, 064904 (2014).CrossRefGoogle Scholar
  9. 9.
    Cyndie Poulin, Meriam Triki, Karim Bousmaki, Alexandre Duhant, Hervé Louche and Bertrand Wattrisse. Terahertz thermometry system to measure temperature in the thickness of a solid polymer. Quantitative InfraRed Thermography Journal. TQRT 2016–0032.Google Scholar
  10. 10.
    M. Romano, A. Chulkov, A. Sommier, D. Balageas, V. Vavilov, J. C. Batsale, C. Pradere. Broadband Sub-terahertz Camera Based on Photothermal Conversion and IR Thermography. Journal of Infrared Millimeter and Terahertz waves. January 2016.  https://doi.org/10.1007/s10762-015-0241-x.CrossRefGoogle Scholar
  11. 11.
    J. M. Rampnoux, H. Michel, M. A. Salhi, S. Grauby, W. Claeys, S. Dilhaire. Time gating imaging through thick silicon substrate: a new step towards backside characterization. Microelectronics Reliability 46 (2006) 1520–1524. doi: https://doi.org/10.1016/j.microrel.2006.07.029.CrossRefGoogle Scholar
  12. 12.
    E. Stübling, Y. Bauckhage, E. Jelli, B. Fischer, B. Globisch, M. Schell, A. Heinrich, J.C. Balzer, M. Koch. A THz Tomography System for Arbitrarily Shaped Samples. J Infrared Milli Terahz Waves.  https://doi.org/10.1007/s10762-017-0415-9.CrossRefGoogle Scholar
  13. 13.
    Saroj R. Tripathi, yuya Sugiyama, Kosuke Murate, Kazuki Imayama and Kodo Kawase. Teraherz wave three-dimensional computed tomography based on injection-seeded terahertz wave parametric emitter. Optics Express March 2016.  https://doi.org/10.1364/OE.24.006433.CrossRefGoogle Scholar
  14. 14.
    M. Romano, A. Sommier, J. C. Batsale and C. Pradere. 3D transient temperature measurement in homogeneous solid material with THz waves. SPIE Photonics Europe, 2016, Brussels, Belgium.Google Scholar
  15. 15.
    MATLAB FVT®*: Copyright (c) 2012, 2013, 2014, 2015 Ali Akbar Eftekhari All rights reserved.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. Bensalem
    • 1
  • A. Sommier
    • 1
  • J. C. Mindeguia
    • 1
  • J. C. Batsale
    • 1
  • Luis-David Patino-Lope
    • 2
  • C. Pradere
    • 1
    Email author
  1. 1.I2M, UMR CNRS 5295, Esplanade des Arts et MétiersTalenceFrance
  2. 2.Centro de Investigación Científica de Yucatán, Unidad de Energía Renovable, Parque Científico Tecnológico de YucatánMéridaMexico

Personalised recommendations