Advertisement

Biological Effects of 25 to 150 GHz Radiation After In Vitro Exposure of Human Fibroblasts: a Comparison of Experimental Results

  • Valeria Franchini
  • Silvio Ceccuzzi
  • Andrea Doria
  • Gian Piero Gallerano
  • Emilio Giovenale
  • Gian Luca Ravera
  • Andrea De Amicis
  • Stefania De Sanctis
  • Sara Di Cristofaro
  • Elisa Regalbuto
  • Elisa Coluzzi
  • Jessica Marinaccio
  • Antonella Sgura
  • Roberto Bei
  • Monica Benvenuto
  • Andrea Modesti
  • Laura Masuelli
  • Florigio Lista
Article

Abstract

In this paper, we present a comprehensive discussion of the results obtained after in vitro exposure of human fetal fibroblasts and human adult fibroblasts to pulsed radiation in a wide band between 100 and 150 GHz and to continuous wave radiation at 25 GHz. In order to assess potential effects of exposure, the genome integrity, cell cycle, cytological ultrastructure, and proteins expression were evaluated.

Keywords

Millimeter waves Terahertz Biological effects Non-ionizing radiation In vitro exposure Human primary cells Fibroblasts 

Notes

Acknowledgements

We gratefully acknowledge the technical support of M. Aquilini, E. Campana, S. Di Giovenale, A. Fastelli, P. Petrolini, and B. Raspante in the design and realization of the exposure setup as well as their skillful assistance during the irradiation experiments.

Funding Information

This work was supported by the Italian Ministry of Defence, SEGREDIFESA/DNA – 5° Department of Technological Innovation (GREAM project).

References

  1. 1.
    M.-O. Mattsson, O. Zeni, M. Simko, Is there a biological basis for therapeutic applications of millimetre waves and THz waves?, J Infrared Milli Terahz Waves (this issue) Google Scholar
  2. 2.
    G.J. Wilmink, J.E.J Grund, Current state of research on biological effects of terahertz radiation, J Infrared Milli Terahz Waves; 32, 1074–1122 (2011)CrossRefGoogle Scholar
  3. 3.
    A. Ramundo Orlando, G.P. Gallerano, Terahertz Radiation Effects and Biological Applications, J Infrared Milli Terahz Waves 30, 1308–1318 (2009)Google Scholar
  4. 4.
    H. Hintzsche, C. Jastrow, T. Kleine-Ostmann, U. Kärst, T. Schrader, H. Stopper, Terahertz electromagnetic fields (0.106 THz) do not induce manifest genomic damage in vitro, PLoS One; 7: e46397 (2012)CrossRefGoogle Scholar
  5. 5.
    P. H. Siegel, Terahertz Technology in Biology and Medicine, IEEE Trans MW Theory and Tech 52, 2438–2447 (2004)CrossRefGoogle Scholar
  6. 6.
    G.P. Gallerano; E. Grosse, R. Korenstein, M. Dressel, W. Mantele, M.R. Scarfi, A.C. Cefalas, P. Taday, R.H. Clothier, P. Jepsen, THz-BRIDGE: a European project for the study of the interaction of terahertz radiation with biological systems, Proc. of the Joint 29th International Conference on Infrared and Millimeter Waves and 12th International Conference on Terahertz Electronics Page(s): 817–818 (2004);  https://doi.org/10.1109/ICIMW.2004.1422345
  7. 7.
    A. Ramundo-Orlando, G.P. Gallerano, P. Stano, A. Doria, E. Giovenale, G. Messina, M. D’Arienzo, I. Spassovsky, Permeability changes of cationic liposomes loading carbonic anhydrase induced by 130 GHz pulsed radiation, Bioelectromagnetics 28, 587–598 (2007)CrossRefGoogle Scholar
  8. 8.
    O. Zeni, G.P. Gallerano, A. Perrotta, M. Romanò, A. Sannino, M. Sarti, M. D’Arienzo, A. Doria, E. Giovenale, A. Lai, G. Messina and M.R. Scarfì, Cytogenetic Observations in human peripheral blood leukocytes following in vitro exposure to THz radiation: A pilot study Health Phys. 92(4) 349–357 (2007)CrossRefGoogle Scholar
  9. 9.
    A. Korenstein-Ilan et al., Terahertz radiation increases genomic instability in human lymphocytes Radiation Research 170(2) 224­234 (2008)CrossRefGoogle Scholar
  10. 10.
    R.H. Clothier, N. Bourne, Effects of THz exposure on human primary keratinocyte differentiation and viability, Journal of Biological Physics 29, 179 (2003)CrossRefGoogle Scholar
  11. 11.
    H. Hintzsche, C. Jastrow, B. Heinen, K. Baaske, T. Kleine-Ostmann, M. Schwerdtfeger, M.K.Shakfa, U. Kärst, M. Koch, T.Schrader, H. Stopper, Terahertz radiation at 0.380 THz and 2.520 THz does not lead to DNA damage in skin cells in vitro, Radiat Res. 179, 38–45 (2013)CrossRefGoogle Scholar
  12. 12.
    Wilmink, G.J., et al. Determination of death thresholds and identification of terahertz (THz)-specific gene expression signatures. in Optical Interactions with Tissues and Cells XXI. 2010: SPIE. 7562: pp.75620K–75620K-8Google Scholar
  13. 13.
    A. De Amicis, S. De Sanctis, S. Di Cristofaro, V. Franchini, F. Lista, E. Regalbuto, E. Giovenale, G.P. Gallerano, P. Nenzi, R. Bei, M. Fantini, M. Benvenuto, L. Masuelli, E. Coluzzi, C. Cicia, A. Sgura, Biological effects of in vitro THz radiation exposure in human foetal fibroblasts, Mutation Research (2015) 793: 150–160CrossRefGoogle Scholar
  14. 14.
    V. Franchini, S. De Sanctis, J. Marinaccio, A. De Amicis, E. Coluzzi, S. Di Cristofaro, F. Lista, E. Regalbuto, A. Doria, E. Giovenale, G.P. Gallerano, R. Bei, M. Benvenuto, L. Masuelli, I. Udroiu, A. Sgura, Effect of 0.15 THz radiation on genome integrity of adult fibroblasts, Environmental and Molecular Mutagenesis, 2018 Mar 30  https://doi.org/10.1002/em.22192
  15. 15.
    V. Franchini, E. Regalbuto, A. De Amicis, S. De Sanctis, S. Di Cristofaro, E. Coluzzi, J. Marinaccio, A. Sgura, S. Ceccuzzi, A. Doria, G.P. Gallerano, E. Giovenale, G.L. Ravera, R. Bei, M. Benvenuto, A. Modesti, L. Masuelli, F. Lista, Genotoxic Effects In Human Fibroblasts Exposed To Microwave Radiation, Health Physics. Health Physics: July 2018 - Volume 115 - Issue 1 - p 126–139,  https://doi.org/10.1097/HP.0000000000000871
  16. 16.
    G.P. Gallerano, A. Doria, E. Giovenale, I. Spassovsky, High power THz sources and applications at ENEA-Frascati, J Infrared Milli Terahz Waves 35, 17–24 (2014)CrossRefGoogle Scholar
  17. 17.
    M. Lippmann, B.S. Cohen, R.B. Schlesinger, Environmental Health Science: Recognition, Evaluation and Control of Chemical and Physical Health Hazards Oxford University Press (2003)Google Scholar
  18. 18.
    T. Kleine-Ostman et al., Field Exposure and Dosimetry in the THz Frequency Range, IEEE Trans-TST, 4, pp.12–25 (2014)Google Scholar
  19. 19.
    L. Vershaeve, J. Juutilainen, I. Lagroye, J. Miyakoshi, R. Saunders, R. de Seze, T. Tenforde, E. van Rongen, B. Veyret. and Z. Xu, In vitro and in vivo genotoxicity of radiofrequency fields, Mutat Res 705(3): 252–68 (2010)CrossRefGoogle Scholar
  20. 20.
    A. Azqueta, K.B. Gutzkov, C.C. Priestley, S. Meier, J.S. Walker, G. Brunborg, A.R. Collins, A comparative performance test of standard, medium- and high-throughput comet assay, Toxicology in Vitro 27(2): 768–773 (2013)CrossRefGoogle Scholar
  21. 21.
    F. Degrassi, C. Tanzarella, L.A. Ierardi, J. Zima, A. Cappai, A. Lascialfari, F. Allegra, M. Cristaldi, CREST staining of micronuclei from free-living rodents to detect enviromental contamination in situ, Mutagenesis 14(4): 391–396 (1999)CrossRefGoogle Scholar
  22. 22.
    A. Sgura and D. Cimini, Telomeres and chromosomes segregation in Telomeres: Function, Shortening and Lengthening. Editor: Leonardo Mancini Nova Science Publishers, Inc. (2009)Google Scholar
  23. 23.
    R. Nuccitelli et al., Nanosecond Pulsed electric fields cause melanomas to selfdestruct, Biochemical and Biophysical Research Communications (BBRC) 343, 351 (2006)CrossRefGoogle Scholar
  24. 24.
    P. Lukes, H. Akiyama, C. Jiang, A. Doria, G.P. Gallerano, A. Ramundo-Orlando, S. Romeo, M.R. Scarfì, O. Zeni, Special Electromagnetic Agents: From Cold Plasma to Pulsed Electromagnetic Radiation in Akiyama H., Heller R. (Eds) Bioelectrics, 109–154 Springer, Tokyo (2017)CrossRefGoogle Scholar
  25. 25.
    D. Remondini, R. Nylund, J. Reivinen, F. Poulletier de Gannes, B. Veyret, I. Lagroye, E. Haro, M.A. Trillo, M. Capri, C. Franceschi, K. Schlatterer, R. Gminski, R. Fitzner, R. Tauber, J. Schuderer, N. Kuster, D. Leszczynski, F. Bersani, C. Maercker, Gene expression changes in human cells after exposure to mobile phone microwaves., Proteomics. 2006 Sep; 6(17):4745–54.CrossRefGoogle Scholar
  26. 26.
    T. Sakurai, T. Kiyokawa, E. Narita, Y. Suzuki, M. Taki, J. Miyakoshi,Analysis of gene expression in a human-derived glial cell line exposed to 2.45 GHz continuous radiofrequency electromagnetic fields., J Radiat Res. 2011;52(2):185–92.CrossRefGoogle Scholar
  27. 27.
    D. Habauzit, C. Le Quement, M. Zhadobov, C. Martin, M. Aubry, R. Sauleau, Y. Le Drean,Transcriptome Analysis Reveals the Contribution of Thermal and the Specific Effects in Cellular Response to Millimeter Wave Exposure., PlosOne (2014) 9(10): e109435.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Valeria Franchini
    • 1
  • Silvio Ceccuzzi
    • 2
  • Andrea Doria
    • 2
  • Gian Piero Gallerano
    • 2
  • Emilio Giovenale
    • 2
  • Gian Luca Ravera
    • 2
  • Andrea De Amicis
    • 1
  • Stefania De Sanctis
    • 1
  • Sara Di Cristofaro
    • 1
  • Elisa Regalbuto
    • 1
    • 3
  • Elisa Coluzzi
    • 3
  • Jessica Marinaccio
    • 3
  • Antonella Sgura
    • 3
  • Roberto Bei
    • 4
  • Monica Benvenuto
    • 4
  • Andrea Modesti
    • 4
  • Laura Masuelli
    • 5
  • Florigio Lista
    • 1
  1. 1.Scientific Department of Army Medical Center of RomeRomeItaly
  2. 2.ENEA, Fusion and Nuclear Safety DepartmentRomaItaly
  3. 3.Department of ScienceUniversity of Rome “Roma Tre”RomeItaly
  4. 4.Department of Clinical Sciences and Translational MedicineUniversity of Rome “Tor Vergata”RomeItaly
  5. 5.Department of Experimental MedicineUniversity of Rome “La Sapienza”RomeItaly

Personalised recommendations