Advertisement

Topology-Based Prediction of Pathway Dysregulation Induced by Intense Terahertz Pulses in Human Skin Tissue Models

  • Cameron M. Hough
  • David N. Purschke
  • Chenxi Huang
  • Lyubov V. Titova
  • Olga Kovalchuk
  • Brad J. Warkentin
  • Frank A. Hegmann
Article
  • 237 Downloads

Abstract

The strong interaction between terahertz (THz) radiation and biological systems has motivated the development of several biomedical technologies, including imaging and spectroscopy applications with promising potential for improved disease diagnosis. This interaction mechanism also implies that external excitation with intense pulses of THz energy could couple to important biological structures and induce significant downstream phenotypic effects. In this study, we expose human skin tissue models to a prolonged train of high-intensity THz pulses and measure the resulting global differential gene expression. From these data, signal pathway perturbation analysis identified pathways that are predicted to be significantly dysregulated, including the cytokine-cytokine receptor interaction and glioma pathways, and further identified the gene-level mechanisms predominantly responsible. These results indicate that induction of an inflammatory-like response and suppression of division/differentiation in cancer are possible. These effects could be further explored and characterized in different types of normal and cancerous tissues to determine potential novel clinical applicability of intense THz pulses.

Keywords

Terahertz Intense terahertz pulses Global gene expression Skin Bioinformatics Pathway dysregulation Inflammatory response Glioma Cancer 

Notes

Acknowledgements

We acknowledge support from NSERC, CFI, and the AITF Strategic Chairs Program, and technical assistance from Beipei Shi, Greg Popowich, Matt Reid, Rocio Rodriguez-Juarez, Rommy Rodriguez-Juarez, Andrey Golubov, and Yaroslav Ilnytskyy.

References

  1. 1.
    Son, J.-H. (2014). Terahertz Biomedical Science & Technology. Boca Raton, FL: CRC Press. Print.CrossRefGoogle Scholar
  2. 2.
    Cheon, H., Yang, H.-J., & Son, J.-H. Toward Clinical Cancer Imaging Using Terahertz Spectroscopy. IEEE Journal of Selected Topics in Quantum Electronics. 23(4): 2017.Google Scholar
  3. 3.
    Ashworth, P.C., Pickwell-MacPherson, E., Provenzano, E., Pinder, S.E., Purushotham, A.D., Pepper, M., & Wallace, V.P. Terahertz pulsed spectroscopy of freshly excised human breast cancer. Optics Express. 17(15): 12444–12454, 2009.Google Scholar
  4. 4.
    Wallace, V.P., Fitzgerald, A.J., Shankar, S., Flanagan, N. Pye, R., Cluff, J., & Arnone, D.D. Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo. British Journal of Dermatology. 151(2): 424–432, 2004.CrossRefGoogle Scholar
  5. 5.
    Pickwell-MacPherson, E. & Wallace, V.P. Terahertz pulsed imaging – A potential medical imaging modality? Photodiagnosis and Photodynamic Therapy. 6(2): 128–134, 2009.CrossRefGoogle Scholar
  6. 6.
    Teraview Application Note. Using the TPS Spectra 3000 as a Tool for the Investigation of Cancers: Using the Hand-held Probe to Investigate Breast Cancer. 2012.Google Scholar
  7. 7.
    Eadie, L., Reid, C., Fitzgerald, A., & Wallace, V. Optimizing multi-dimensional terahertz imaging analysis for colon cancer diagnosis. Expert Systems with Applications. 40(6): 2043–2050, 2013.CrossRefGoogle Scholar
  8. 8.
    Wilmink, G.J. & Grundt, J. E. Invited Review Article: Current State of Research on Biological Effects of Terahertz Radiation. Journal of Infrared, Millimeter, and Terahertz Waves. 32: 1074–1122, 2011.CrossRefGoogle Scholar
  9. 9.
    Romanenko, S., Begley, R., Harvey, A., Hool, L., & Wallace, V. The interaction between electromagnetic fields at megahertz, gigahertz, and terahertz frequencies with cells, tissues, and organisms: risks and potential. Journal of Royal Society Interface. 14: 20170585.  https://doi.org/10.1098/rsif.2017.0585
  10. 10.
    Echchgadda, I., Grundt, J.E., Cerna, C.Z., Roth, C.C., Payne, J.A., Ibey, B.L., & Wilmink, G.J. Terahertz Radiation: A Non-contact Tool for the Selective Stimulation of Biological Responses in Human Cells. IEEE Transactions on Terahertz Science and Technology. 6(1): 54–68, 2016.CrossRefGoogle Scholar
  11. 11.
    Echchgadda, I., Cerna, C.Z., Sloan, M.A., Elam, D.P., & Ibey, B.L. Effects of Different Terahertz Frequencies on Gene Expression in Human Keratinocytes. Proc. Of SPIE. Optical Interactions with Tissue and Cells XXVI. 9321: 1–9, 2015.Google Scholar
  12. 12.
    Titova, L.V., Ayesheshim, A.K., Golubov, A., Rodriguez-Juarea, R., Woycicki, R., Hegmann, F.A., & Kovalchuk, O. Intense THz pulses down-regulate genes associated with skin cancer and psoriasis: a new therapeutic avenue? Scientific Reports. 3(2362): 1–6, 2013.Google Scholar
  13. 13.
    Gallerano, G.P. et al. THz-BRIDGE: Final Report. Quality of Life Management/Living Resources. 2004.Google Scholar
  14. 14.
    Bock, J., Fukuyo, Y., Kang, S., Phipps, M.L., Alexandrov, L.B., Rasmussen, K.O., Bishop, A.R., Rosen, E.D., Martinez, J.S., Chen, H.-T., Rodriguez, G., Alexandrov, B.S., Usheva, A. Mammalian Stem Cells Reprogramming in Response to Terahertz Radiation. PLoS One. 5(12): 1–6, 2010.CrossRefGoogle Scholar
  15. 15.
    Titova, L.V., Ayesheshim, A.K., Golubov, A., Fogen, D., Rodriguez-Juarea, R., Hegmann, F.A., & Kovalchuk, O. Intense THz pulses cause H2AX phosphorylation and activate DNA damage response in human skin tissue. Biomedical Optics Express. 4(4): 559–568, 2013.CrossRefGoogle Scholar
  16. 16.
    Amicis, A., De Sanctis, S., Di Cristofaro, S., Franchini, V., Lista, F., Regalbuto, E., Giovenale, E., Gallerano, G.P., Nenzi, P., Bei, R., Fantini, M., Benvenuto, M., Masuelli, L., Coluzzi, E., Cicia, C., & Sgura, A. Biological effects of in vitro THz radiation exposure in human foetal fibroblasts. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 793: 150–160, 2015.CrossRefGoogle Scholar
  17. 17.
    Hoffman, M.C. “Intense laser-based THz sources” in The 2017 Terahertz Science and Technology Roadmap. Journal of Applied Physics D. 50: 6–7, 2017.Google Scholar
  18. 18.
    Hebling, J., Almasi, G., & Kozma, I.Z. Velocity matching by pulse front tilting for large-area THz-pulse generation. Optics Express. 10(21): 1161–1166, 2002.CrossRefGoogle Scholar
  19. 19.
    Yeh, K.-L., Hoffman, M.C., Hebling, J., & Nelson, K.A. Generation of 10 μJ ultrashort terahertz pulses by optical rectification. Applied Physics Letters. 90(171121): 1–3, 2007.Google Scholar
  20. 20.
    Lee, Y. (2009). Principles of Terahertz Science and Technology. New York, NY: Springer. Print.Google Scholar
  21. 21.
    Hirori, H., Doi, A., Blanchard, F., & Tanaka, K. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3. Applied Physics Letters. 98(9): 1–3, 2011.Google Scholar
  22. 22.
    Acheva, A., Aerts, A., Rombouts, Ch., Baatout, S., Salomaa, S., Manda, K., Hildebrandt, G., & Kamarainen, M. Human 3-D tissue models in radiation biology: current status and future perspectives. International Journal of Radiation Research. 12(2): 81–98, 2014.Google Scholar
  23. 23.
    Voichita C, Ansari S and Draghici S (2017). ROntoTools: R Onto-Tools suite. R package version 2.6.0.Google Scholar
  24. 24.
    Tarca, A.L., Draghici, S., Khatri, P., Hassan, S.S., Mittal, P., Kim, J.-s., Kim, C.J., Kusanovic, J.P., & Romero, R. A novel signaling pathway impact analysis. Bioinformatics. 25(1): 75–82, 2009.CrossRefGoogle Scholar
  25. 25.
    Voichita, C., Donato, M., & Draghici, S. Incorporating gene significance in the impact analysis of signaling pathways. 11 th International Conference on Machine Learning and Applications. ICMLA 2012: 126–131, 2012.Google Scholar
  26. 26.
    Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research. 28(1): 29–34, 2000.CrossRefGoogle Scholar
  27. 27.
    Website: http://www.genome.jp/kegg/kegg1.html [Electronic access]
  28. 28.
    Alexandrov, B. et al. Specificity and Heterogeneity of Terahertz Radiation Effect on Gene Expression in Mouse Mesenchymal Stem Cells. Scientific Reports. 3(1184): 1–8, 2013.Google Scholar
  29. 29.
    Kim, K.-T., Park, J., Jo, S.J., Jung, S., Kwon, O.S., Gallerano, G.P., Park, W.-Y., & Park, G.-S. High-power femtosecond-terahertz pulse induces a wound response in mouse skin. Scientific Reports. 3(2296): 1–7, 2013.Google Scholar
  30. 30.
    Williams, R. The influence of high intensity terahertz radiation on mammalian cell adhesion, proliferation, and differentiation. Physics in Medicine and Biology. 58(2): 373–391, 2013.CrossRefGoogle Scholar
  31. 31.
    Takashima, A. & Faller, D. Targeting the RAS Oncogene. Expert Opinion on Therapeutic Targets. 17(5): 507–31. 2013.CrossRefGoogle Scholar
  32. 32.
    Fecher, L.A., Amaravadi, R.K., & Flaherty, K.T. The MAPK pathway in melanoma. Current Opinion in Oncology. 20(2): 183–189, 2008.CrossRefGoogle Scholar
  33. 33.
    Pandey, V., Bhaskara, V.K., & Babu, P.P. Implications of Mitogen-Activated Protein Kinase Signaling in Glioma. Journal of Neuroscience Research. 94(2): 114–127, 2016.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Medical Physics Division, Department of OncologyUniversity of AlbertaEdmontonCanada
  2. 2.Department of PhysicsUniversity of AlbertaEdmontonCanada
  3. 3.Department of PhysicsWorcester Polytechnic InstituteWorcesterUSA
  4. 4.Department of BiologyUniversity of LethbridgeLethbridgeCanada

Personalised recommendations