Thermal Impact on the Human Oral Cavity Exposed to Radiation from Biomedical Devices Operating in the Terahertz Frequency Range

  • Oliver SpathmannEmail author
  • René Schürmann
  • Martin Zang
  • Joachim Streckert
  • Volkert Hansen
  • Mehrdad Saviz
  • Markus Clemens


New medical applications, e.g., aiming at cancer research support, are currently extending the number of technical systems operating in the terahertz (THz) frequency range. This field of applications results in potentially exposed body areas, which have not been taken into account in earlier literature according to exposure assessments at THz frequencies. Due to the small penetration depths in the regarded frequency range, between a few 100 and some micrometers at 0.1 and 10 THz respectively, it was adequate in former analyses to consider near-surface body tissues, e.g., the human eyes or the skin while being exposed to electromagnetic fields. Now, the consideration of body internal tissues becomes necessary since small mobile medical devices can potentially expose tissues underneath the body surface, e.g., inside the oral cavity. In this paper, a multi-level approach is employed in order to estimate electric field strengths and temperature elevations in the human oral cavity by use of numerical computations. Moreover, the urgently needed dielectric properties of the considered tissues, which are not yet available in published databases, are provided here.


Dielectric tissue data Human oral cavity tissue exposure Numerical simulations Temperature elevation Terahertz 


Funding Information

This work was funded by the Deutsche Forschungsgemeinschaft (DFG) under grant no. CL143/12-1.


  1. 1.
    TeraView, Study to distinguish between healthy tissue and basal cell carcinoma., TeraView Application note, online:, August 1st, 2017
  2. 2.
    O. Spathmann, M. Saviz, J. Streckert, M. Zang, V. Hansen, and M. Clemens, Numerical Verification of the Applicability of the “Effective Medium Theory” with Respect to Dielectric Properties of Biological Tissue, IEEE Transactions on Magnetics, vol. 51, no. 3, Article 7204204, 2015Google Scholar
  3. 3.
    O. Spathmann, M. Zang, J. Streckert, V. Hansen, M. Saviz, T. M. Fiedler, K. Statnikov, U. R. Pfeiffer, and M. Clemens, Numerical Computation of Temperature Elevation in Human Skin due to Electromagnetic Exposure in the THz Frequency Range, IEEE Transactions on Terahertz Science and Technology, vol. 5, no. 6, pp. 978–989, 2015CrossRefGoogle Scholar
  4. 4.
    H. Pennes, Analysis of tissue and arterial blood temperatures in the resting human forearm, Journal of Applied Physiology, vol. 1, pp. 93–122, 1948CrossRefGoogle Scholar
  5. 5.
    S. Gabriel, R. Lau, and C. Gabriel, The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues, Physics in Medicine and Biology, vol. 41, pp. 2271–2293, 1996CrossRefGoogle Scholar
  6. 6.
    P. A. Hasgall, F. Di Gennaro, C. Baumgartner, E. Neufeld, M. C. Gosselin, D. Payne, A. Klingenböck, and N. Kuster: IT’IS Database for thermal and electromagnetic parameters of biological tissues, Version 3.0, September 01st, 2015Google Scholar
  7. 7.
    S. Giordano, Effective medium theory for dispersions of dielectric ellipsoids, Journal of Electrostatics, vol. 58, pp. 59–76, 2003CrossRefGoogle Scholar
  8. 8.
    J. Ellison, Water: A dielectric reference, Journal Molecular Liquids, vol. 68, pp. 171–279, 1996CrossRefGoogle Scholar
  9. 9.
    M. Saviz and R. Faraji-Dana, A theoretical model for the frequency-dependent dielectric properties of corneal tissue at microwave frequencies, Progress In Electromagnetics Research, vol. 137, 389–406, 2013CrossRefGoogle Scholar
  10. 10.
    C. Reid, Spectroscopic methods for medical diagnosis at terahertz wavelengths, Doctoral thesis, University College London, 2009Google Scholar
  11. 11.
    C. Yatongchai, A. W. Wren, S. K. Sundaram, Characterization of Hydroxyapatite-Glass Composites Using Terahertz Time-Domain Spectroscopy, Journal of Infrared Milli. Terahertz Waves, vol. 36, pp. 81–93. 2015CrossRefGoogle Scholar
  12. 12.
    Z. Taylor et al., THz medical imaging: In-vivo hydration sensing, IEEE Trans. THz Sci. Technol., vol. 1, pp. 201–219, 2011CrossRefGoogle Scholar
  13. 13.
    D. Ameen, M. Bishop, and T. McMullen, A lattice model for computing the transmissivity of the cornea and sclera, Biophys J., vol. 75, pp. 2520–2531, 1998CrossRefGoogle Scholar
  14. 14.
    A. Sihvola, Mixing Rules with Complex Dielectric Coefficients, Subsurface Sensing Technologies and Applications, vol. 1, no. 4, pp. 393–415, 2000CrossRefGoogle Scholar
  15. 15.
    M. Saviz, L. Mogouon Toko, O. Spathmann, J. Streckert, V. Hansen, M. Clemens, and R. Faraji-Dana, A New Open-Source Toolbox for Estimating the Electrical Properties of Biological Tissues in the Terahertz Frequency Band, Journal of Infrared, Millimeter and Terahertz Waves, vol. 34, no. 9, pp. 529–538, 2013CrossRefGoogle Scholar
  16. 16.
    P. Kugler, Zelle Organ Mensch: Bau, Funktion und Krankheiten, 1st Editon, Munich, Germany, Elsevir Urban & Fischer, 2006Google Scholar
  17. 17.
    K. Lehmann, E. Hellwig, and H.-J. Wenz, Zahnärztliche Propädeutik: Einführung in die Zahnheilkunde. 12th Edition, Cologne, Germany, Deutscher Ärzteverlag, 2012Google Scholar
  18. 18.
    A. Maerten, Dreidimensionale Charakterisierung der Mikrostruktur des Dentins, Berlin, Germany, Technische Universität, Dissertation, 2010Google Scholar
  19. 19.
    W. L. Tham, W. S. Chow, Z. A. Mohd Ishak, Simulated body fluid and water absorption effects on poly(methyl methacrylate)/hydroxyapatite denture base composites. eXPRESS Polymer Letters, vol. 4, no. 9, pp. 517–528, 2010CrossRefGoogle Scholar
  20. 20.
    Z. Zhou and J. Zheng, Tribology of dental materials: a review, Journal of Physics D: Applied Physics, vol. 41, pp. 1–22, 2008Google Scholar
  21. 21.
    S.-F. Chen, C.-W. Lu, Y-M. Wang, M.-T. Tasi, and C. C. Yang, In vivo OCT imaging of the oral cavity tissue by use of a probe, Pacific Rim Conference on Lasers and Electro-Optics, 2005, CLEO/Pacific Rim 2005, pp. 338–339, 2005CrossRefGoogle Scholar
  22. 22.
    M. E. Brosky, The Role of Saliva in Oral Health: Strategies for Prevention and Management of Xerostomia, The Journal of Supportive Oncology, vol. 5, no. 5, pp. 215–225, 2007Google Scholar
  23. 23.
    Z. Taylor, R. Singh, D. Bennet, P. Tewari, C. Kealey, N. Bajwa, M. Culjat, A. Stojadinovic, J. Hubschman, E. Brown and W. Grundfest, THz medical imaging: in-vivo hydration sensing, IEEE Transactions on Terahertz Science and Technology, vol. 1, no. 1, pp. 201–219, 2011CrossRefGoogle Scholar
  24. 24.
    F. Duck, Physical Properties of Tissue: A Comprehensive Reference Book, New York, Academic, 1990. Google Scholar
  25. 25.
    O. Spathmann, V. Hansen, M. Saviz, J. Streckert, M. Zang, and M. Clemens, Estimation of Dielectric Material Properties in THz- Frequency Range Using Effective Medium Theory, 2013 Proceedings of the International Symposium on Electromagnetic Compatibility (EMC EUROPE 2013), pp. 154–159, Brugge, Belgium, September 2–6, 2013Google Scholar
  26. 26.
    Y. C. Sim, K.-M. Ahn, J. Y. Park, C.-S. Park, and J.-H. Son, Temperature-Dependent Terahertz Imaging of Excised Oral Malignant Melanoma, IEEE Transactions on Terahertz Science and Technology, vol. 3, no. 4, pp. 368–373, 2013CrossRefGoogle Scholar
  27. 27.
    J. Ciano, and B. L. Beatty, Regional Quantitative Histological Variations in Human Oral Mucosa. The Anatomical Record, vol. 298, no. 3, pp. 562–578, 2015CrossRefGoogle Scholar
  28. 28.
    S. K. Das, P. K. Adhikary, and D. K. Bhattacharyya, Surface and Lamina Propria Lipids of Bovine Gingiva, Journal of Dental Research, vol. 55, no. 4, pp. 602–605, 1976CrossRefGoogle Scholar
  29. 29.
    C. Squier, and M. J. Kremer, Biology of Oral Mucosa and Esophagus. Journal of the National Cancer Institute Monographs, vol. 2001, no. 29, pp. 7–15, 2001CrossRefGoogle Scholar
  30. 30.
    CST STUDIO SUITE®, CST – Computer Simulation Technology AG, Darmstadt, GermanyGoogle Scholar
  31. 31.
    T. Weiland, Time domain electromagnetic Field computation with Finite Difference Methods, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 9, pp. 259–319, 1996CrossRefGoogle Scholar
  32. 32.
    T. Samaras, A. Christ, A. Klingenböck, and N. Kuster, Worst case temperature rise in a one-dimensional tissue model exposed to radiofrequency radiation, IEEE Transactions on Biomedical Engineering, vol. 54, no. 3, pp. 492–496, 2007CrossRefGoogle Scholar
  33. 33.
    P. Bernadi, M. Cavagnaro, S. Pisa, and E. Piuzzi , Specific Absorption Rate and Temperature Elevation in a Subject Exposed in the Far-Field of Radio-Frequency Sources Operating in the 10-900-MHz Range, IEEE Transactions on Biomedical Engineering, vol. 50, no. 3, pp. 295–304. 2003CrossRefGoogle Scholar
  34. 34.
    E. Sardini, M. Serpelloni, and S. Pandini, Analysis of Tongue Pressure Sensor for Biomedical Applications. MeMeA, IEEE International Symposium, Lissabon, 2014Google Scholar
  35. 35.
    M. Preiskorn, S. Zmuda, and J. Trykowski, In vitro investigations of the heat transfer phenomena in human tooth, Acta of Bioengineering and Biomechanics, vol. 5, no. 2, pp. 23–36, 2003Google Scholar
  36. 36.
    S. Huclova, D. Erni, and J. Fröhlich, Modelling and validation of dielectric properties of human skin in the MHz region focusing on skin layer morphology and material composition, J. Physics D: Applied Physics, vol.45, 025301, 2012Google Scholar
  37. 37.
    J. Werner and M. Buse, Temperature profiles with respect to inhomogeneity and geometry of the human body, The American Physiological Society, pp. 1110–1118, 1988Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chair of Electromagnetic TheoryUniversity of WuppertalWuppertalGermany
  2. 2.Department of Biomedical EngineeringAmirkabir University of TechnologyTehranIran

Personalised recommendations