Advertisement

Sharp Absorption Peaks in THz Spectra Valuable for Crystal Quality Evaluation of Middle Molecular Weight Pharmaceuticals

  • Tetsuo Sasaki
  • Tomoaki Sakamoto
  • Makoto Otsuka
Article
  • 243 Downloads

Abstract

Middle molecular weight (MMW) pharmaceuticals (MW 400~4000) are attracting attention for their possible use in new medications. Sharp absorption peaks were observed in MMW pharmaceuticals at low temperatures by measuring with a high-resolution terahertz (THz) spectrometer. As examples, high-resolution THz spectra for amoxicillin trihydrate, atorvastatin calcium trihydrate, probucol, and α,β,γ,δ-tetrakis(1-methylpyridinium-4-yl)porphyrin p-toluenesulfonate (TMPyP) were obtained at 10 K. Typically observed as peaks with full width at half-height (FWHM) values as low as 5.639 GHz at 0.96492 THz in amoxicillin trihydrate and 8.857 GHz at 1.07974 THz for probucol, many sharp peaks of MMW pharmaceuticals could be observed. Such narrow absorption peaks enable evaluation of the crystal quality of MMW pharmaceuticals and afford sensitive detection of impurities.

Keywords

Terahertz spectroscopy High resolution and high accuracy Middle molecular weight pharmaceuticals Sharp absorption peaks 

Notes

Acknowledgements

We thank Dr. Jun-ichi Nishizawa for his important suggestion about high-resolution THz spectroscopy.

Funding Information

This work was partly supported by Grants-in-Aid for Scientific Research (B) (No. 16H03882) from the Japan Society for the Promotion of Science.

References

  1. 1.
    B. Torre, F. Albericio, Molecules, 22, 368 (2017).CrossRefGoogle Scholar
  2. 2.
    P. Declerck, Generics and Biosimilars Initiative Journal, 1, 13 (2012).CrossRefGoogle Scholar
  3. 3.
    T. Kimura, J. Bioanal. Biomed, 9, 263 (2017).Google Scholar
  4. 4.
    I. Fujii, Farumashia, 52, 116 (2016).Google Scholar
  5. 5.
    N. Blagden, M. de Matas, P.T. Gavan, P. York, Advanced Drug Delivery Reviews, 59, 617 (2007).CrossRefGoogle Scholar
  6. 6.
    E. Chelam, Proc. Indian Acad. Sci. (Math. Sci.) 18, 283 (1943)Google Scholar
  7. 7.
    International Conference on Harmonization; “Impurities in New Drug Substances”, (1995).Google Scholar
  8. 8.
    T. Sasaki, T. Sakamoto, M. Otsuka, Analytical Chemistry, 90, 1677 (2018).CrossRefGoogle Scholar
  9. 9.
    T. Sasaki, T. Tanabe, J. Nishizawa, Optics and Photonics Journal, 4, 8 (2014).CrossRefGoogle Scholar
  10. 10.
    T. Sasaki, T. Tanabe, J. Nishizawa, J. Jpn. Soc. Infrared Science & Technology, 26, 74 (2016).Google Scholar
  11. 11.
    S. Tenjarla, P. Puranajoti, R. Kasina, T. Mandal, J. Pharm. Sci., 87, 425 (1998).CrossRefGoogle Scholar
  12. 12.
    H. Akasaka H. T. Endo, H. Nagase, H. Ueda, S. Kobayashi, Chem Pharm Bull, 48, 1986 (2000).Google Scholar
  13. 13.
    T. Sasaki, K. Itatani, T. Sakamoto, J. Nishizawa, Proc. IRMMW-THz 2012, Australia (2012).Google Scholar
  14. 14.
    S. Feng, N. Shan, K. Carpenter, Organic Process Research & Development, 10, 1212 (2006).CrossRefGoogle Scholar
  15. 15.
    J. Gerber, M. Caira, A. Lötter, J. Crystallogr. Spectrosc. Res., 23, 863 (1993).CrossRefGoogle Scholar
  16. 16.
    C. Groom, I. Bruno, M. Lightfoot, S. Ward, Acta Cryst. B72, 171 (2016).Google Scholar
  17. 17.
    T. Tanabe, K. Suto, J. Nishizawa, T. Kimura, K. Saito, J. Appl. Phys. 93, 4610 (2003).CrossRefGoogle Scholar
  18. 18.
    J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, Y. Oyama, IEEE Photo. Tech. Lett., 18, 2008 (2006).CrossRefGoogle Scholar
  19. 19.
    T. Sasaki, Proc. IRMMW-THz 2017, Mexico (2017).Google Scholar
  20. 20.
    J. Nishizawa, K. Suto, T. Sasaki, T. Tanabe, T. Tanno, Y. Oyama, F. Sato, Proc. Japan Academy B, 82, 353 (2006).CrossRefGoogle Scholar
  21. 21.
    J. Nishizawa, T. Sasaki, K. Suto, M. Ito, T. Yoshida, T. Tanabe, Int. J. Infrared Millimeter Waves 19, 291 (2008).CrossRefGoogle Scholar
  22. 22.
    J. Nishizawa, T. Tanno, T. Yoshida, K. Suto, Chemistry Letters, 36, 134 (2007).CrossRefGoogle Scholar
  23. 23.
    D.Allis, T.Korter, Chem Phys Chem, 7, 2398 (2006).CrossRefGoogle Scholar
  24. 24.
    S.Saito, T.Inerbaev, H.Mizuseki, N.Igarashi,R.Note,Y.Kawazoe, Chem Phys Lett, 423, 439 (2006).CrossRefGoogle Scholar
  25. 25.
    P.Jepsen, S.Clark, Chem Phys Lett, 442, 275 (2007).CrossRefGoogle Scholar
  26. 26.
    R.Williams, E.Heilweil, Chemical Physics, 373, 251 (2010).CrossRefGoogle Scholar
  27. 27.
    O.Kambara, K.Tominaga, J.Nishizawa, T.Sasaki, H.Wang, M.Hayashi,Chem Phys Lett, 498, 86 (2010).CrossRefGoogle Scholar
  28. 28.
    F.Zhang, M.Hayashi, H.Wang, K.Tominaga, O.Kambara, J.Nishizawa, T.Sasaki, J Chem Phys, 140, 174509 (2014).CrossRefGoogle Scholar
  29. 29.
    F. Zhang, H. Wang, K. Tominaga, M. Hayashi, J. Phys. Chem. A, 119, 3008 (2015).CrossRefGoogle Scholar
  30. 30.
    T. Sasaki, O. Kambara, T. Sakamoto, M. Otsuka, J. Nishizawa, Vib. Spectrosc. 85, 91 (2016).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Graduate School of Medical PhotonicsShizuoka UniversityHamamatsuJapan
  2. 2.Department of Electronics and Materials ScienceShizuoka UniversityShizuokaJapan
  3. 3.Research Institute of ElectronicsShizuoka UniversityShizuokaJapan
  4. 4.Division of DrugsNational Institute of Health SciencesKanagawaJapan
  5. 5.Research Institute of Pharmaceutical SciencesMusashino UniversityTokyoJapan

Personalised recommendations