W-Band Circularly Polarized TE11 Mode Transducer

  • Mingzhou Zhan
  • Wangdong He
  • Lei Wang


This paper presents a balanced sidewall exciting approach to realize the circularly polarized TE11 mode transducer. We used a voltage vector transfer matrix to establish the relationship between input and output vectors, then we analyzed amplitude and phase errors to estimate the isolation of degenerate mode. A mode transducer with a sidewall exciter was designed based on the results. In the 88–100 GHz frequency range, the simulated axial ratio is less than 1.05 and the isolation of linearly polarization TE11 mode is higher than 30 dBc. In back-to-back measurements, the return loss is generally greater than 20 dB with a typical insertion loss of 1.2 dB. Back-to-back transmission measurements are in excellent agreement with simulations.


Circular polarization Mode transducer Voltage vector W-band Waveguide components 


Funding information

The work for this grant was supported by the National Natural Science Foundation of China (Grant no.: 61601085).


  1. 1.
    D. Schobert, C. Pfluegler, T. Thiry, P. Kohl, M. Schneider, A study on polarisers for satellite applications, Microw. Conf. (GeMIC), pp. 1-4, German, Mar. 2014.Google Scholar
  2. 2.
    G. Bertin, B. Piovano, L. Accatino, and M. Mongiardo, Full-wave design and optimization of circular waveguide polarizers with elliptical irises, IEEE Trans. Microw. Theory Tech., vol. 50, no. 4, pp. 1077–1083, Apr. 2002.Google Scholar
  3. 3.
    J. Bornemann, V. Labay, Ridge waveguide polarizer with finite and stepped-thickness septum, IEEE Trans. Microw. Theory Tech., vol. 43, no. 8, pp. 1782-1787, 1995.Google Scholar
  4. 4.
    N. Yoneda, M. Miyazaki, H. Matsumura, and M. Yamato, A design of novel grooved circular waveguide polarizers, IEEE Trans. Microw. Theory Tech., vol. 48, no. 12, pp. 2446–2452, Dec. 2000.Google Scholar
  5. 5.
    B. Subbarao and V. Fusco, Differential phase polarizer used for RCS control, in IEEE AP-S Int. Antenna Propag., vol. 4, pp. 4256-4259, 2004.Google Scholar
  6. 6.
    G. Virone, R. Tascone, O. A. Peverini, G. Addamo, R. Orta, Combined-phase-shift waveguide polarizer, IEEE Microw. and Wireless Compon. Lett., vol. 18, no. 8, pp. 509-511, Aug. 2008.Google Scholar
  7. 7.
    S. Wang, C. Chien, C. Wang, and R. Wu, A circular polarizer designed with a dielectric septum loading, IEEE Trans. Microw. Theory Tech., vol. 52, no. 7, pp. 1719-1723, Jul. 2000.Google Scholar
  8. 8.
    G. Pisano, L. Pietranera, K. Isaak, L. Piccirillo, B. Johnson, B. Maffei, S. Melhuish, A broadband WR10 turnstile junction orthomode transducer, IEEE Microw. and Wireless Compon. Lett., vol. 17, no. 14, pp. 286-288, Apr. 2007.Google Scholar
  9. 9.
    C. A. Leal-Sevillano, K. B. Cooper, J. A. Ruiz-Cruz, J. R. Montejo-Garai, J. M. Rebollar, A 225 GHz circular polarization waveguide duplexer based on a septum orthomode transducer polarizer, IEEE Trans. Terahertz Sci. and Tech., vol. 3 no. 5, pp. 574-583, Sep. 2013.Google Scholar
  10. 10.
    G. Virone, O. A. Peverini, M. Lumia, M. Z. Farooqui, G. Addamo, R. Tascone, W-band orthomode transducer for dense focal-plane clusters, IEEE Trans. Microw. Theory Tech., vol. 25, no. 2, pp. 85-87, Feb. 2015.Google Scholar
  11. 11.
    M. A. Morgan, J. R. Fisher, T. A. Boyd, Compact orthomode transducers using digital polarization synthesis, IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 3666-3676, Dec. 2010.Google Scholar
  12. 12.
    Stange, Torsten, Simple Broadband Circular Polarizer in Oversized Waveguide, Journal of Infrared, Millimeter, and Terahertz Waves, vol. 37, no. 2, PP. 137-146, Feb. 1, 2016.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations