1550-nm Driven ErAs:In(Al)GaAs Photoconductor-Based Terahertz Time Domain System with 6.5 THz Bandwidth

  • U. NandiEmail author
  • J. C. Norman
  • A. C. Gossard
  • H. Lu
  • S. Preu


ErAs:In(Al)GaAs superlattice photoconductors are grown using molecular beam epitaxy (MBE) with excellent material characteristics for terahertz time-domain spectroscopy (TDS) systems operating at 1550 nm. The transmitter material (Tx) features a record resistivity of 3.85 kΩcm and record breakdown field strength of 170 ± 40 kV/cm (dark) and 130 ± 20 kV/cm (illuminated with 45 mW laser power). Receivers (Rx) with different superlattice structures were fabricated showing very high mobility (775 cm2/Vs). The TDS system using these photoconductors features a bandwidth larger than 6.5 THz with a laser power of 45 mW at Tx and 16 mW at Rx.


Terahertz pulse Photoconductor Time domain spectroscopy (TDS) Rare earth 



We acknowledge the Deutsche Forschungsgemeinschaft (DFG) for funding project PR1413/3-1 (REPHCON). We further thank Christoph Gleichweit (Menlo Systems) for the assistance with the optical system and John Bowers for the partial support of the project.


  1. 1.
    S. Ishii, M. Seta, N. Nakai, S. Nagai, N. Miyagawa, A. Yamauchi, H. Motoyama, and M. Taguchi, “Site testing at dome Fuji for submillimeter and terahertz astronomy: 220 GHz atmospheric-transparency,” Polar Science, vol. 3, no. 4, pp. 213–221, 2010.Google Scholar
  2. 2.
    J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” Journal of Applied Physics, vol. 107, no. 11, p. 6, 2010.Google Scholar
  3. 3.
    R. Dickie, R. Cahill, V. Fusco, H. S. Gamble, and N. Mitchell, “THz frequency selective surface filters for earth observation remote sensing instruments,” IEEE Transactions on Terahertz Science and Technology, vol. 1, no. 2, pp. 450–461, 2011.Google Scholar
  4. 4.
    P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE transactions on microwave theory and techniques, vol. 52, no. 10, pp. 2438–2447, 2004.Google Scholar
  5. 5.
    S. Preu, G. Döhler, S. Malzer, L. Wang, and A. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” Journal of Applied Physics, vol. 109, no. 6, p. 4, 2011.Google Scholar
  6. 6.
    A. F. Olvera, H. Lu, A. Gossard, and S. Preu, “Continuous-wave 1550 nm operated terahertz system using ErAs: In(Al)GaAs photo-conductors with 52 dB dynamic range at 1 THz,” Optics Express, vol. 25, no. 23, pp. 29492–29500, 2017.Google Scholar
  7. 7.
    S. M. Duffy, S. Verghese, A. McIntosh, A. Jackson, A. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 6, pp. 1032–1038, 2001.Google Scholar
  8. 8.
    S. Preu, “A unified derivation of the terahertz spectra generated by photoconductors and diodes,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 35, no. 12, pp. 998–1010, 2014.Google Scholar
  9. 9.
    E. Brown, K. McIntosh, K. Nichols, and C. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Applied Physics Letters, vol. 66, no. 3, pp. 285–287, 1995.Google Scholar
  10. 10.
    J. Middendorf and E. Brown, “Thz generation using extrinsic photoconductivity at 1550 nm,” Optics Express, vol. 20, no. 15, pp. 16504–16509, 2012.Google Scholar
  11. 11.
    K. K. Williams, Z. Taylor, J. Suen, H. Lu, R. Singh, A. Gossard, and E. Brown, “Toward a 1550 nm InGaAs photoconductive switch for terahertz generation,” Optics Letters, vol. 34, no. 20, pp. 3068–3070, 2009.Google Scholar
  12. 12.
    A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 μ m pulse excitation,” Applied Physics Letters, vol. 90, no. 10, p. 101119, 2007.Google Scholar
  13. 13.
    A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56 μ m pulse excitation,” Applied Physics Letters, vol. 91, no. 1, p. 011102, 2007.Google Scholar
  14. 14.
    N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. Lampin, “Terahertz radiation from heavy-ion-irradiated I n 0.53 G a 0.47 A s photoconductive antenna excited at 1.55 μ m,” Applied Physics Letters, vol. 87, no. 19, p. 193510, 2005.Google Scholar
  15. 15.
    O. Hatem, J. Freeman, J. Cunningham, P. Cannard, M. Robertson, E. Linfield, A. Davies, and D. Moodie, “Generation of terahertz radiation from Fe-doped InGaAsP using 800 nm to 1550 nm pulsed laser excitation,” Journal of Infrared, Millimeter and Terahertz Waves, vol. 37, no. 5, pp. 415–425, 2016.Google Scholar
  16. 16.
    B. Globisch, R. Dietz, R. Kohlhaas, T. Göbel, M. Schell, D. Alcer, M. Semtsiv, and W. Masselink, “Iron doped InGaAs: Competitive THz emitters and detectors fabricated from the same photoconductor,” Journal of Applied Physics, vol. 121, no. 5, p. 053102, 2017.Google Scholar
  17. 17.
    B. Globisch, R. B. Kohlhaas, J. Giesekus, M. Schell, M. P. Semtsiv, and W. T. Masselink, “High power and high bandwidth photoconductive terahertz emitters and detectors made of iron doped InGaAs,” in Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC, 2017 Conference on), pp. 1–1, IEEE, 2017.Google Scholar
  18. 18.
    R. J. Dietz, B. Globisch, H. Roehle, D. Stanze, T. Göbel, and M. Schell, “Influence and adjustment of carrier lifetimes in InGaAs/InAlAs photoconductive pulsed terahertz detectors: 6 THz bandwidth and 90dB dynamic range,” Optics express, vol. 22, no. 16, pp. 19411–19422, 2014.Google Scholar
  19. 19.
    A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. Driscoll, M. Hanson, A. Gossard, and J. Smet, “Terahertz emission characteristics of ErAs: InGaAs-based photoconductive antennas excited at 1.55 μ m,” Applied Physics Letters, vol. 96, no. 14, p. 141108, 2010.Google Scholar
  20. 20.
    J. Suen, P. Krogen, S. Preu, H. Lu, A. Gossard, D. Driscoll, and P. Lubin, “Measurement and modeling of ErAs:I n 0.53 G a 0.47 A s nanocomposite photoconductivity for THz generation at 1.55 μ m pump wavelength,” Journal of Applied Physics, vol. 116, no. 1, p. 013703, 2014.Google Scholar
  21. 21.
    E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” Journal of Applied Physics, vol. 104, no. 5, p. 053113, 2008.Google Scholar
  22. 22.
    S. Verghese, K. McIntosh, and E. Brown, “Optical and terahertz power limits in the low-temperature-grown GaAs photomixers,” Applied Physics Letters, vol. 71, no. 19, pp. 2743–2745, 1997.Google Scholar
  23. 23.
    M. M. Yovanovich, J. R. Culham, and P. Teertstra, “Analytical modeling of spreading resistance in flux tubes, half spaces, and compound disks,” IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, vol. 21, no. 1, pp. 168–176, 1998.Google Scholar
  24. 24.
    A. Podzorov and G. Gallot, “Low-loss polymers for terahertz applications,” Applied optics, vol. 47, no. 18, pp. 3254–3257, 2008.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Information TechnologyTU DarmstadtDarmstadtGermany
  2. 2.Materials DepartmentUniversity of CaliforniaSanta BarbaraUSA
  3. 3.College of Engineering and Applied SciencesNanjing UniversityNanjingChina

Personalised recommendations