Advertisement

Development of Millimeter Wave Fabry-Pérot Resonator for Simultaneous Electron-Spin and Nuclear Magnetic Resonance Measurement

  • Yuya IshikawaEmail author
  • Kenta Ohya
  • Yutaka Fujii
  • Akira Fukuda
  • Shunsuke Miura
  • Seitaro Mitsudo
  • Hidetomo Yamamori
  • Hikomitsu Kikuchi
Article

Abstract

We report a Fabry-Pérot resonator with spherical and flat mirrors to allow simultaneous electron-spin resonance (ESR) and nuclear magnetic resonance (NMR) measurements that could be used for double magnetic resonance (DoMR). In order to perform simultaneous ESR and NMR measurements, the flat mirror must reflect millimeter wavelength electromagnetic waves and the resonator must have a high Q value (Q > 3000) for ESR frequencies, while the mirror must simultaneously let NMR frequencies pass through. This requirement can be achieved by exploiting the difference of skin depth for the two frequencies, since skin depth is inversely proportional to the square root of the frequency. In consideration of the skin depth, the optimum conditions for conducting ESR and NMR using a gold thin film are explored by examining the relation between the Q value and the film thickness. A flat mirror with a gold thin film was fabricated by sputtering gold on an epoxy plate. We also installed a Helmholtz radio frequency coil for NMR and tested the system both at room and low temperatures with an optimally thick gold film. As a result, signals were obtained at 0.18 K for ESR and at 1.3 K for NMR. A flat-mirrored resonator with a thin gold film surface is an effective way to locate NMR coils closer to the sample being examined with DoMR.

Keywords

ESR NMR Double magnetic resonance Fabry-Pérot Millimeter waves Very low temperatures 

Notes

Acknowledgements

The authors express sincere thanks to Dr. S. Vasiliev for his great effort on constructing ESR system on DR and giving advice on making FPR. We thank Dr. Akira Matsubara (Department of Physics, Kyoto University) for his help on constructing our ESR system on the DR, and Prof. Soonchil Lee (Department of Physics, Korea Advanced Institute of Science and Technology) for providing Si:P sample. We also appreciate Prof. S. Yonezawa, Prof. Y. Hasegawa, and Dr. Y. Arata (Headquarters for Innovative Society-Academia Cooperation, University of Fukui) for their support on using the fluorescent X-ray measurement system, and KIYOKAWA Plating Industry Co., Ltd. for giving a standard thin gold film for the fluorescent X-ray measurements. This work is partly supported by JSPS KAKENHI Grant Numbers 17K05514 and 26400331 and by the Cooperative Research Program of Research Center for Development of Far-Infrared Region, University of Fukui (No. H27FIRDM011E, H28FIRDM024A, H29FIRDM015B).

References

  1. 1.
    R.S. Alger, Electron Paramagnetic resonance: Techniques and Applications, 2nd edn., (John Wiley & Sons Inc., Joboken, 1968)Google Scholar
  2. 2.
    C.P. Poole Jr, Electron spin resonance, 2nd edn., (Dover Publications Inc., New York, 1983)Google Scholar
  3. 3.
    C.P. Slichter, Principles of Magnetic Resonance with Example from Solid State Physics, (Harper&Row Publications Inc., New York, 1963)Google Scholar
  4. 4.
    B. Cowan, Nuclear Magnetic Resonance and Relaxation, (Cambridge University Press, Cambridge, 1997)CrossRefGoogle Scholar
  5. 5.
    J.H. Ardenkjæ-Larsen, B. Fridlund, A. Gram, G. Hansson, L. Hansson, M.H. Lerche, R. Servin, M. Thaning, K. Golman, PNAS, 100, 18 (2003), pp. 10158-10163,  https://doi.org/10.1073/pnas.1733835100
  6. 6.
    K.R. Thurber, W.M. Yau, R. Tycko, J. Magn. Reson., 204, (2010), pp. 303–313,  https://doi.org/10.1016/j.jmr.2010.03.016 CrossRefGoogle Scholar
  7. 7.
    J. Leggett, R. Hunter, J. Granwehr, R. Panek, A.J. Perez-Linde, A. J. Horsewill, J. McMaster, G. Smith, W. Köckenberger, Phys. Chem. Chem. Phys., 12, (2010), pp. 5883–5892,  https://doi.org/10.1039/C002566F
  8. 8.
    Y. Matsuki, H. Takahashi, K. Ueda, T. Idehara, I. Ogawa, M. Toda, H. Akutsu, T. Fujiwara, Phys. Chem. Chem. Phys., 12, (2010), pp. 5799–5803,  https://doi.org/10.1039/C002268C CrossRefGoogle Scholar
  9. 9.
    L. Lumata, M. Merritt, C. Khemtong, S.J. Ratnakar, V.J. Tol, L. Yu, L. Song, Z. Kovacs, RSC Adv., 2, (2012), pp. 12812–12817,  https://doi.org/10.1039/C2RA21853D CrossRefGoogle Scholar
  10. 10.
    A.W. Overhauser, Phys. Rev., 92, (1953), pp. 411–415CrossRefGoogle Scholar
  11. 11.
    C.A. McDowell, A. Naito, J. Magn. Reson, 45, 2, (1981), pp. 205–222,  https://doi.org/10.1016/0022-2364(81)90117-7 Google Scholar
  12. 12.
    C.A. McDowell, A. Naito, D.L. Sastry, Y.U. Cui, K. Sha, S.X. Yu, Journal of Molecular Structure, 195, (1989), pp. 361–381,  https://doi.org/10.1016/0022-2860(89)80183-8 CrossRefGoogle Scholar
  13. 13.
    B. Epel, A. Pöppl, P. Manikandan, S. Vega, D. Goldfarb, J. Magn. Reson., 148, 2, (2001), pp. 388–397, doi: https://doi.org/10.1006/jmre.2000.2261
  14. 14.
    G.W. Morley, L.C. Brunel, J.V. Tol, Rev. Sci. Instrum., 79, 6, 064703, (2008), https://doi.org/10.1063/1.2937630Google Scholar
  15. 15.
    A. Abragam, The principles of Nuclear Magnetism, (Clarendon Press, Oxford, 1961), ch.9–10Google Scholar
  16. 16.
    B. E. Kane, Nature 393, (1998), pp. 133–137,  https://doi.org/10.1038/30156 CrossRefGoogle Scholar
  17. 17.
    S.A. Vasiliyev, J. Järvinen, E. Tjukanoff, A. Kharitonov, S. Jaakkola, Rev. Sci. Instrum., 75, 1, (2004), pp. 94-98,  https://doi.org/10.1063/1.1633006
  18. 18.
    T. Sakon, H. Nojiri, K. Koyama, T. Asano, Y. Ajiro, M. Motokawa, J. Phys. Soc. Jpn., 72, (2003), pp. 140–144,  https://doi.org/10.1143/JPSJS.72SB.140 CrossRefGoogle Scholar
  19. 19.
    M. Hagiwara, T. Kashiwagi, H. Yashiro, T. Umeno, T. Ito, T. Sano, J. Phys.:Conf. Ser., 150, 012015, (2009),  https://doi.org/10.1088/1742-6596/150/1/012015 Google Scholar
  20. 20.
    Y. Fujii, T. Goto, K. Awaga, T. Okuno, Y. Sasaki, T. Mizusaki, J. Magn. Magn. Mater., 177-181, 991, (1998)CrossRefGoogle Scholar
  21. 21.
    T. Itou, A. Oyamada, S. Maegawa, R. Kato, Nature Physics 6, (2010), pp. 673–676,  https://doi.org/10.1038/NPHYS1715 CrossRefGoogle Scholar
  22. 22.
    S. Sheludiakov, J. Ahokas, O. Vainio, J. Järvinen, D. Zvezdov, S. Vasiliev, V.V. Khmelenko, S. Mao, D.M. Lee, Rev. Sci. Instrum., 85, 053902, (2014),  https://doi.org/10.1063/1.4875985 CrossRefGoogle Scholar
  23. 23.
    J. Järvinen, J. Ahokas, S. Sheludyakov, O. Vainio, L. Lehtonen, S. Vasiliev, D. Zvezdov, Y. Fujii, S. Mitsudo, T. Mizusaki, M. Gwak, SangGap Lee, Soonchil Lee, L. Vlasenko, Phys. Rev. B 90, 214401, (2014)CrossRefGoogle Scholar
  24. 24.
    H. Kogelnik, T. Li, Proc. IEEE, 54, 10, (1966)CrossRefGoogle Scholar
  25. 25.
    Y. Ishikawa, K. Ohya, S. Miura, Y. Fujii, S. Mistudo, T. Mizusaki, A. Fukuda, A. Matsubara,H. Kikuchi H. Yamamori, S. Lee, S. Vasiliev, J. Phys.: Conf. Ser., in press.Google Scholar
  26. 26.
    S. Gonda, Preparation and Evaluation of Thin Film and Application Technique Handbook (in Japanese), (Fuji-Technosystem Co. Ltd., Tokyo, 1984)Google Scholar
  27. 27.
    R.A. Serway, Principles of Physics, 2nd edn, (Saunders College Pub, Fort Worth, Texas, 1998), pp. 602Google Scholar
  28. 28.
    M. Shaham, J. Barak, U. El-Hanany, W.W. Warren Jr, Phys. Rev. B 22, 11, (1980), pp. 5400–5419CrossRefGoogle Scholar
  29. 29.
    T. F. Rosenbaum, R. F. Milligan, M. A. Paalanen, G. A. Thomas, R. N. Bhatt, W. Lin, Phys. Rev. B 27, 7509 (1983)CrossRefGoogle Scholar
  30. 30.
    Y. Fujii, S. Mitsudo, K. Morimoto, T. Mizusaki, M. Gwak, S. G. Lee, A. Fukuda, A. Matsubara, T. Ueno, S. Lee, J. Phys.:Conf. Ser., 568, 042005, (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Advanced Interdisciplinary Science and TechnologyUniversity of FukuiFukuiJapan
  2. 2.Research Center for Development of Far-Infrared RegionUniversity of FukuiFukuiJapan
  3. 3.Department of PhysicsHyogo College of MedicineNishinomiyaJapan
  4. 4.Department of Applied PhysicsUniversity of FukuiFukuiJapan
  5. 5.Technical Division, School of EngineeringUniversity of FukuiFukuiJapan

Personalised recommendations