Theoretical Study on the 1.185-THz Third Harmonic Gyrotron

  • O. DumbrajsEmail author
  • T. Idehara


We discuss how the existing University of Fukui (FIR UF) second harmonic double-beam gyrotron with the operating frequency 0.79 THz can be adopted for operation at the third harmonic. The new gyrotron will operate at the frequency 1.185 THz and will significantly increase the frequency of the dynamic nuclear polarization-nuclear magnetic resonance (DNP-NMR) spectrometer. This will allow one to study new bio-molecules.A special attention is payed to the mode competition between the operating \( {TE}_{3,11}^{+} \) mode at the third harmonic and the parasitic modes at the second and fundamental harmonics. The operating parameters of the modified gyrotron are U = 20 kV, α = 1.3, I = 0.35 A, and B = 14.60 T and the expected output power about \( 100\mathrm{W} \).


Gyrotron Higher harmonics DNP NMR 


  1. 1.
    V.N. Manuilov, M. Yu Glyavin, A.S. Sedov, V. Yu Zaslavky, and T. Idehara, “Design of a second harmonic double-beam continuous wave gyrotron with operating frequency of 0.79 THz”. J. Infrared, Millimeter and Terahertz Waves 36, DOI (2015).
  2. 2.
    T. Idehara, M. Glyavin, A. Kuleshov, S. Sabchevski, V. Manuiliov, V. Zaslavsky, I. Zotova, and A. Sedov, “Experimental study of THz band double-beam gyrotron”, Proceedings IRMMW-THZ 2017.Google Scholar
  3. 3.
    G.P. Saraph, T.M. Antonsen Jr., G.S. Nusinovich, and B. Levush, “A study of parametric instability in a harmonic gyrotron: Designs of third harmonic gyrotrons at 94 GHz and 210 GHz”. Physics of Plasmas 2, 2839 (1995).CrossRefGoogle Scholar
  4. 4.
    T. Idehara, I. Ogawa, Y. Shimizu, and T. Tatsukawa, “Higher harmonic operations of submilimeter wave gyrotrons (gyrotron FU series)”. Int. J. Infrared Millimeter Waves 19, (1998).Google Scholar
  5. 5.
    Hongfu Li et al, A 35-GHz low-voltage third-harmonic gyrotron with a permanent magnet system IEEE Trans. Plasma Sci. 31, 264 (2003).Google Scholar
  6. 6.
    M.Yu. Glyavin, A.G. Luchinin, V.N. Manuilov, and G.S. Nusinovich, “Design of a subterahertz, third-harmonic continuous-wave gyrotron” IEEE Trans. Plasma Sci. 36, 591 (2008)Google Scholar
  7. 7.
    Xuesong Yuan, Ying Lan, Chunyan Ma, Yu Han, and Yang Yan, “Theoretical study on a 0.6 THz third harmonic gyrotron” Phys. Plasmas 18, 103115 (2011).Google Scholar
  8. 8.
    Xiang-Bo Qi, Chao-Hai Du, and Pu-Kun Liu, “High-efficiency excitation of a third harmonic gyrotron” IEEE Transactions on Electron Devices 62, 3399 (2015).Google Scholar
  9. 9.
    O. Dumbrajs, T. Idehara, T. Saito, and Y. Tatematsu, “Calculations of starting currents and frequencies in frequency-tunable gyrotrons” Jpn. J. Appl. Phys. 51, 126601 (2012).CrossRefGoogle Scholar
  10. 10.
    N.A. Zavolsky, G.S. Nusinovich, and A.B. Pavelev, Girotrony, p. 84, Gorky, 1989, (in Russian).Google Scholar
  11. 11.
    O. Dumbrajs, T. Idehara, Y. Iwata, S. Mitsudo, I. Ogawa, and B. Piosczyk, “Hysteresis-like effects in gyrotron oscillations” Phys. Plasmas 10, 1183 (2003).CrossRefGoogle Scholar
  12. 12.
    V.I. Shcherbinin, A.V. Hlushchenko, A.V. Maksimenko, and V.I. Tkachenko, “Effect of cavity ohmic losses on efficiency of low-power terahertz gyrotron” IEEE Transactions on Electron Devices 64, 3898 (2017).CrossRefGoogle Scholar
  13. 13.
    O. Dumbrajs, T. Saito, Y. Tatematsu, and Y. Yamaguchi, “Influence of the electron velocity spread and the beam width on the efficiency and mode competition in the high-power pulsed gyrotron for 300 GHz band collective Thomson scattering diagnostics in the large helical device” Phys. Plasmas 23, 093109 (2016).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.The Institute of Solid State PhysicsUniversity of LatviaRigaLatvia
  2. 2.Research Center for Development of Far-Infrared RegionUniversity of Fukui (FIR UF)Fukui-shiJapan

Personalised recommendations