Journal of Infrared, Millimeter, and Terahertz Waves

, Volume 38, Issue 9, pp 1107–1119 | Cite as

Direct Measurements of Terahertz Meta-atoms with Near-Field Emission of Terahertz Waves

  • Kazunori Serita
  • Juraj Darmo
  • Iwao Kawayama
  • Hironaru Murakami
  • Masayoshi Tonouchi


We present the direct measurements of terahertz meta-atoms, an elementary unit of metamaterials, by using locally generated terahertz waves in the near-field region. In contrast to a conventional far-field terahertz spectroscopy or imaging, our technique features the localized emission of coherent terahertz pulses on a sub-wavelength scale, which has a potential for visualizing details of dynamics of each meta-atom. The obtained data show the near-field coupling among the meta-atoms and the impact of the electric field distribution from the excited meta-atom to neighbor meta-atoms. The observable LC resonance response is enhanced with an increase of numbers of meta-atoms. Furthermore, our approach also has a potential for visualizing the individual mode of meta-atom at different terahertz irradiation spots. These data can help us to understand the important role of the meta-atom in metamaterials and develop the novel terahertz components and devices such as active terahertz metamaterial and compact, high-sensitive bio-sensor devices.


Terahertz Metamaterial Meta-atom Near-field Nonlinear optical crystal 



This work was partially supported by JSPS KAKENHI Grant Numbers JP15K18053 and JP17H01269.


  1. 1.
    T.-J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, Science 303, 1494 (2004).CrossRefGoogle Scholar
  2. 2.
    W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, Phys. Rev. B 75, 041102 (2007).CrossRefGoogle Scholar
  3. 3.
    A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, Appl. Phys. Lett. 92, 011119 (2008).CrossRefGoogle Scholar
  4. 4.
    M. Razanoelina, K. Serita, E. Matsuda, I. Kawayama, H. Murakami, and M. Tonouchi, Appl. Phys. Express 9, 32002 (2016).CrossRefGoogle Scholar
  5. 5.
    R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).CrossRefGoogle Scholar
  6. 6.
    D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).CrossRefGoogle Scholar
  7. 7.
    S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, Science, 306, 1351 (2004).CrossRefGoogle Scholar
  8. 8.
    S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, Phys. Rev. Lett. 94, 037402 (2005).CrossRefGoogle Scholar
  9. 9.
    C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005).CrossRefGoogle Scholar
  10. 10.
    N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, Nature Materials 7, 31 (2008).CrossRefGoogle Scholar
  11. 11.
    H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, Nature 444, 597 (2006).CrossRefGoogle Scholar
  12. 12.
    A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, Opt. Express 17, 136 (2009).CrossRefGoogle Scholar
  13. 13.
    H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, Opt. Express 16, 7181 (2008).CrossRefGoogle Scholar
  14. 14.
    M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, Appl. Phys. Lett. 80, 154 (2002).CrossRefGoogle Scholar
  15. 15.
    T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, Appl. Phys. Lett. 91, 062511 (2007).CrossRefGoogle Scholar
  16. 16.
    C. Debus and P. H. Bolivar, Appl. Phys. Lett. 91, 184102 (2007).CrossRefGoogle Scholar
  17. 17.
    A. Soltani, H. Neshasteh, A. Mataji-Kojouri, N. Born, E. Castro-Camus, M. Shahabadi, and M. Koch, Appl. Phys. Lett. 108, 191105 (2016).CrossRefGoogle Scholar
  18. 18.
    Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, Nanotechnology 24, 214003 (2013).CrossRefGoogle Scholar
  19. 19.
    C. Min, P. Wang, C. Chen, Y. Deng, Y. Lu, H. Ming, T. Ning, Y. Zhou, and G. Yang, Opt. Lett. 33, 869 (2008).CrossRefGoogle Scholar
  20. 20.
    M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, K. J. Ahn, Q. H. Park, P. C. M. Planken, and D. S. Kim, Opt. Express 16, 20484 (2008).CrossRefGoogle Scholar
  21. 21.
    F. Blanchard, A. Doi, T. Tanaka, H. Hirori, H. Tanaka, Y. Kadoya, and K. Tanaka, Opt. Express 19, 8277 (2011).CrossRefGoogle Scholar
  22. 22.
    I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, Phys. Rev. Lett. 103, 213902 (2009).CrossRefGoogle Scholar
  23. 23.
    A. Bitzer, J. Wallauer, H. Helm, H. Merbold, T. Feurer, and M. Walther, Opt. Express 17, 22108 (2009).CrossRefGoogle Scholar
  24. 24.
    D. R. Chowdhury, R. Singh, M. Reiten, J. Zhou, A. J. Taylor, and J. F. O’Hara, Opt. Express 19, 10679 (2011).CrossRefGoogle Scholar
  25. 25.
    N. Feth, M. König, M. Husnik, K. Stannigel, J. Niegemann, K. Busch, M. Wegener, and S. Linden, Opt. Express 18, 6545 (2010).CrossRefGoogle Scholar
  26. 26.
    J. Wallauer, A. Bitzer, S. Waselikowski, and M. Walther, Opt. Express 19, 17283 (2001).CrossRefGoogle Scholar
  27. 27.
    R. Singh, C. Rockstuhl, and W. Zhang, Appl. Phys. Lett. 97, 241108 (2010).CrossRefGoogle Scholar
  28. 28.
    D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, J. Opt. Soc. Am. B 7, 2006 (1990).CrossRefGoogle Scholar
  29. 29.
    G. Acuna, S. F. Heucke, F. Kuchler, H.-T. Chen, A. J. Taylor, and R. Kersting, Opt. Express 16, 18745 (2008).CrossRefGoogle Scholar
  30. 30.
    Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, Adv. Opt. Mat. 3, 779 (2015).CrossRefGoogle Scholar
  31. 31.
    J. Cheng, D. Ansari-Oghol-Beig, and H. Mosallaei, Opt. Lett. 39, 6285 (2014).CrossRefGoogle Scholar
  32. 32.
    W. Withayachumnankul, H. Lin, K. Serita, C. M. Shah, S. Sriram, M. Bhaskaran, M. Tonouchi, C. Fumeaux, and D. Abbott, Opt. Express 20, 3345 (2012).CrossRefGoogle Scholar
  33. 33.
    H. Murakami, N. Uchida, R. Inoue, S. Kim, T. Kiwa, and M. Tonouchi, Proc. IEEE 95, 1646 (2007).CrossRefGoogle Scholar
  34. 34.
    T. Kiwa, S. Oka, J. Kondo, I. Kawayama, H. Yamada, M. Tinouchi, and K. Tsukada, Jpn. J. Appl. Phys. 46, L1052 (2007).CrossRefGoogle Scholar
  35. 35.
    Y. Sano, I. Kawayama, M. Tabata, K. A. Salek, H. Murakami, M. Wang, R. Vajtai, P. M. Ajayan, J. Kono, and M. Tonouchi, Sci. Rep. 4, 6046 (2014).CrossRefGoogle Scholar
  36. 36.
    K. Serita, S. Mizuno, H. Murakami, I. Kawayama, Y. Takahashi, M. Yoshimura, Y. Mori, J. Darmo, and M. Tonouchi, Opt. Express 20, 12959 (2012).CrossRefGoogle Scholar
  37. 37.
    H. Murakami, K. Serita, Y. Maekawa, S. Fujiwara, E. Matsuda, S. Kim, I. Kawayama, and M. Tonouchi J. Phys. D: Appl. Phys. 47, 374007 (2014).Google Scholar
  38. 38.
    M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T Hirosumi, and M. Yoshida, Appl. Phys. Lett. 85, 3974 (2004).CrossRefGoogle Scholar
  39. 39.
    J. Heyman, R. Kersting, and K. Unterrainer, App. Phys. Lett 72, 644 (1998).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Kazunori Serita
    • 1
  • Juraj Darmo
    • 1
    • 2
  • Iwao Kawayama
    • 1
  • Hironaru Murakami
    • 1
  • Masayoshi Tonouchi
    • 1
  1. 1.Institute of Laser EngineeringOsaka UniversityOsakaJapan
  2. 2.Photonics InstituteVienna University of TechnologyViennaAustria

Personalised recommendations