Examination of Painting on Metal Support by Terahertz Time-Domain Imaging

  • C. L. Koch Dandolo
  • A. M. Gomez-Sepulveda
  • A. I. Hernandez-Serrano
  • E. Castro-Camus


Two paintings on metal support have been imaged by terahertz time-domain imaging (THz-TDI) in a reflection setup and the X-ray radiographs were also recorded. The study was performed for testing the terahertz radiation (THz) as an imaging method alternative to X-ray radiography, which suffers several limitations in imaging paint layers on metal support. While the information regarding the paint layers of the paintings was almost lost in the records provided by the X-ray radiography, THz-TDI demonstrates the ability to provide important information about them, despite the presence of the underlying metal.


Terahertz time-domain imaging Painting on metal support Terahertz X-radiography Imaging Cultural heritage 



The authors would like to acknowledge with gratitude the financial support of the Consejo Nacional de Ciencia y Tecnología CONACYT (grant numbers 255114, 252939, and 280391) and the financial support of the Swiss National Science Foundation (grant SNSF, P2SKP2_16321/1)


  1. 1.
    D. Vega Esteban, “Oil painting on copper: characterization of the copper support and the feasibility of using pigmented wax-resin infills for paint loss reintegration.,” Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2016.Google Scholar
  2. 2.
    J. A. Van Der Graaf, “Development of Oil-Paint and the Use of Metal-Plates As a Support,” Stud. Conserv., vol. 17, no. sup 1, pp. 139–151, 1972.Google Scholar
  3. 3.
    S. Zaccaron, C. Grespan, and R. Ganzerla, “Characterization of pigments on paintings on copper plate. A case study: the copy of La sepoltura di Cristo by Federico Barocci,” Sci. Ca’ Foscari, 2013.Google Scholar
  4. 4.
    E. Drakaki, M. Kandyla, E. Chatzitheodoridis, I. Zergioti, A. A. Serafetinides, A. Terlixi, E. Kouloumpi, A. P. Moutsatsou, M. Doulgerides, V. Kantarelou, A. Karydas, and C. Vlachou-Mogire, “Laser studies of metallic artworks,” Appl. Phys. A, vol. 101, no. 2, pp. 349–355, 2010.CrossRefGoogle Scholar
  5. 5.
    Science, Technology and European Cultural Heritage: Proceedings of the European Symposium, Bologna, Italy, 13-16 June 1989. Elsevier Science, 2013.Google Scholar
  6. 6.
    D. C. Creagh and D. Bradley, Physical techniques in the study of art, archaeology and cultural heritage. Volume 2. Elsevier, 2007.Google Scholar
  7. 7.
    M. Schreiner, R. Wiesinger, and W. Vetter, “Identification and Preservation of Cultural Heritage,” Chem Views, 2017.Google Scholar
  8. 8.
    E. Ciliberto and G. Spoto, “Modern analytical methods in art and archaeology,” in Chemical analysis: a series of monographs on analytical chemistry and its applications, New York, 2000.Google Scholar
  9. 9.
    S. Lorusso, A. Natali, C. Matteucci, R. Bertolino, and S. Tumidei, “Diagnostic investigation and historical-stylistic evaluation of oil painting on metal board. Example of ‘Christ crucified qith two mourning angels,’” Conserv. Sci. Cult. Herit., vol. 7, 2007.Google Scholar
  10. 10.
    S. Legrand, F. Vanmeert, G. Van der Snickt, M. Alfeld, W. De Nolf, J. Dik, and K. Janssens, “Examination of historical paintings by state-of-the-art hyperspectral imaging methods: from scanning infra-red spectroscopy to computed X-ray laminography,” Herit. Sci., vol. 2, no. 13, pp. 1–11, 2014.Google Scholar
  11. 11.
    J. K. Delaney, M. Thoury, J. G. Zeibel, P. Ricciardi, K. M. Morales, and K. A. Dooley, “Visible and infrared imaging spectroscopy of paintings and improved reflectography,” Herit. Sci., vol. 4, no. 1, p. 6, 2016.Google Scholar
  12. 12.
    E. M. Payne, “Imaging Techniques in Conservation,” J. Conserv. Museum Stud., vol. 10, no. 2, 2013.Google Scholar
  13. 13.
    M. J. Cooper and IUCr, “X-ray absorption coefficients for certain metals,” Acta Crystallogr., vol. 18, no. 4, pp. 813–813, 1965.CrossRefGoogle Scholar
  14. 14.
    C. F. Bridgman, P. Michaels, and H. F. Sherwood, “Radiography of a Painting on Copper by Electron Emission,” Stud. Conserv., vol. 10, no. 1, pp. 1–7, 1965.Google Scholar
  15. 15.
    Y. S. Lee, Principles of terahertz science and technology. 2009.Google Scholar
  16. 16.
    A K. Panwar, A. Singh, A. Kumar, and H. Kim, “Terahertz Imaging System for Biomedical Applications : Current Status,” Int. J. Eng. Technol. IJET-IJENS, vol. 13, no. 2, pp. 33–39, 2013.Google Scholar
  17. 17.
    D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, “T-ray tomography.,” Opt. Lett., vol. 22, no. 12, pp. 904–906, 1997.CrossRefGoogle Scholar
  18. 18.
    W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Reports Prog. Phys., vol. 70, no. 8, pp. 1325–1379, 2007.CrossRefGoogle Scholar
  19. 19.
    K. Fukunaga, Y. Ogawa, S. Hayashi, and I. Hosako, “Terahertz spectroscopy for art conservation,” IEICE Electron. Express, vol. 4, no. 8, pp. 258–263, 2007.CrossRefGoogle Scholar
  20. 20.
    K. Fukunaga, THz Technology Applied to Cultural Heritage in Practice. Tokyo: Springer, 2016.CrossRefGoogle Scholar
  21. 21.
    J. B. Jackson, M. R. Mourou, J. F. Whitaker, I. I. N. Duling, Steve L. Williamson, Michel Menu, and Gerard Mourou, “Terahertz Time-Domain Reflectometry Applied to the Investigation of Hidden Mural Paintings,” Conf. Lasers Electro-Optics/Quantum Electron. Laser Sci. Conf. Photonic Appl. Syst. Technol., no. c, p. CThN3, 2008.Google Scholar
  22. 22.
    C. L. Koch-Dandolo, T. Filtenborg, K. Fukunaga, J. Skou-Hansen, and P. U. Jepsen, “Reflection terahertz time-domain imaging for analysis of an 18th century neoclassical easel painting,” Appl. Opt., vol. 54, no. 16, p. 5123, 2015.CrossRefGoogle Scholar
  23. 23.
    C. L. Koch Dandolo, M. Picollo, C. Cucci, M. Ginanni, E. Prandi, M. Scudieri, and P. U. Jepsen, “Insights on the Side Panels of the Franciscan Triptych by Fra Angelico Using Terahertz Time-Domain Imaging (THz-TDI),” J. Infrared, Millimeter, Terahertz Waves, vol. 38, no. 4, pp. 413–424, 2017.CrossRefGoogle Scholar
  24. 24.
    K. Krügener, M. Schwerdtfeger, S. F. Busch, A. Soltani, E. Castro-Camus, M. Koch, and W. Viöl, “Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology,” Sci. Rep., vol. 5, no. April, p. 14842, 2015.Google Scholar
  25. 25.
    C. L. K. Dandolo, K. Fukunaga, Y. Kohzuma, K. Kiriyama, K. Matsuda, and P. U. Jepsen, “Inspection of Asian Lacquer Substructures by Terahertz Time-Domain Imaging (THz-TDI),” J. Infrared, Millimeter, Terahertz Waves, vol. 38, no. 4, pp. 425–434, 2017.CrossRefGoogle Scholar
  26. 26.
    R. F. Anastasi and E. I. Madaras, “Terahertz NDE for under paint corrosion detection and evaluation,“AIP Conference Proceedings,” 2006, vol. 820 I, pp. 515–522.CrossRefGoogle Scholar
  27. 27.
    I. Cacciari and S. Siano, “THz Characterization of Corroded Metals: The Influence of Surface Roughness,” in 18th Italian National Conference on Photonic Technologies (Fotonica 2016), 2016, p. 68 (4 .)-68 (4.).Google Scholar
  28. 28.
    H. Kariya, A. Sato, T. Tanabe, K. Saito, K. Nishihara, A. Taniyama, and Y. Oyama, “Non-destructive Evaluation of a Corroded Metal Surface Using Terahertz Wave,” ECS Trans., vol. 50, no. 50, pp. 81–88, Apr. 2013.CrossRefGoogle Scholar
  29. 29.
    Y. Ohki, M. Adachi, M. Komatsu, M. Mizuno, and K. Fukunaga, “Detection of polymer degradation and metal corrosion by terahertz imaging using a quantum cascade laser and a THz camera,” in 2013 I.E. International Conference on Solid Dielectrics (ICSD), 2013, pp. 505–508.Google Scholar
  30. 30.
    J. B. Jackson, J. Labaune, R. Bailleul-Lesuer, L. D’Alessandro, A. Whyte, J. W. Bowen, M. Menu, and G. Mourou, “Terahertz pulse imaging in archaeology,” Front. Optoelectron., vol. 8, no. 1, pp. 81–92, 2015.CrossRefGoogle Scholar
  31. 31.
    T. Kurabayashi, S. Sakai, and K. Fujino, “Sub-terahertz imaging of a painted steel,” in 35th International Conference on Infrared, Millimeter, and Terahertz Waves, 2010, pp. 1–2.Google Scholar
  32. 32.
    T. Kurabayashi, S. Yodokawa, and S. Kosaka, “Terahertz imaging through paint layers,” in 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves, 2012, pp. 1–2.Google Scholar
  33. 33.
    K. Su, Y.-C. Shen, and J. A. Zeitler, “Terahertz Sensor for Non-Contact Thickness and Quality Measurement of Automobile Paints of Varying Complexity,” IEEE Trans. TERAHERTZ Sci. Technol., vol. 4, no. 4, 2014.Google Scholar
  34. 34.
    K.-E. Peiponen, J. A. Zeitler, and M. Kuwata-Gonokami, Terahertz Spectroscopy and Imaging. 2013.Google Scholar
  35. 35.
    G. C. Walker, J. W. Bowen, J. Labaune, J.-B. Jackson, S. Hadjiloucas, J. Roberts, G. Mourou, and M. Menu, “Terahertz deconvolution.,” Opt. Express, vol. 20, no. 25, pp. 27230–41, 2012.CrossRefGoogle Scholar
  36. 36.
    NDT resource center, “Data Presentation.” [Online]. Available: Resources/Community College/Ultrasonics/Equipment Trans/Data Pres. htm. [Accessed: 03-May-2017].
  37. 37.
    K. Zuiderveld, “VIII.5. – Contrast Limited Adaptive Histogram Equalization,” in Graphics Gems, 1994, pp. 474–485.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Centro de Investigaciones en Óptica A.CLeónMexico
  2. 2.Escuela de Conservación y Restauración de OccidenteGuadalajaraMexico

Personalised recommendations