Journal of Infrared, Millimeter, and Terahertz Waves

, Volume 38, Issue 9, pp 1047–1066 | Cite as

Review on Polarization Selective Terahertz Metamaterials: from Chiral Metamaterials to Stereometamaterials

  • Elizabath Philip
  • M. Zeki Güngördü
  • Sharmistha Pal
  • Patrick Kung
  • Seongsin Margaret Kim
Article

Abstract

In this article, recent progress and development of terahertz chiral metamaterials including stereometamaterials are thoroughly reviewed. This review mainly focuses on the fundamental principles of design and arrangement of meta-atoms in metamaterials exhibiting chirality with various asymmetry and symmetry and 2D and 3D configuration. Related optical and propagation properties in chiral metamaterials, such as optical activity, circular dichroism, and negative refraction for each different chiral metamaterials, are compared and investigated. Finally, comparison between chiral metamaterials with stereometamaterials in terms of the polarization selective operation along with the similarity and the distinction is addressed as well.

Keywords

THz metamaterials Polarization selective Chiral metamaterials Stereometamaterials Optical activity 

References

  1. 1.
    V. G. Vesalago, Sov. Phys. Usp. 10 509–514 (1968)CrossRefGoogle Scholar
  2. 2.
    J. B. Pendry, A. J. Holden, W. J. Stewart and I. Youngs, Phys. Rev. Lett. 76, (25) 4773–4776 (1996)CrossRefGoogle Scholar
  3. 3.
    R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001)CrossRefGoogle Scholar
  4. 4.
    Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Science 315, 1686 (2007)CrossRefGoogle Scholar
  5. 5.
    W. Cai, U. K. Chettiar, A. V. Kidilshev, and V. M. Shalaev, Nat. Photon. 1, 224 (2007)CrossRefGoogle Scholar
  6. 6.
    D. Schuring, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006)CrossRefGoogle Scholar
  7. 7.
    Y. Liu and X. Zhang, Chem. Soc. Rev. 40, 2494 (2001)CrossRefGoogle Scholar
  8. 8.
    N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008)CrossRefGoogle Scholar
  9. 9.
    J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microw. Theory and Techn. 47(11), 2075 (1999).CrossRefGoogle Scholar
  10. 10.
    R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, Phys. Med. Biol., 47, 3853 (2002)CrossRefGoogle Scholar
  11. 11.
    N. Nagai, M. Sumitomo, M. Imaizumi, M. Imaizumi, and R. Fukasawa, Semicond. Sci. Technol. 21, 201 (2006)CrossRefGoogle Scholar
  12. 12.
    N. Laman, S. S. Harsha, D. Grischkowsky, and J. S. Melinger, Biophys. J., 94, 1010 (2008)CrossRefGoogle Scholar
  13. 13.
    J. H. Son, Terahertz Biomedical Science and Technology, CRC Press, Boca Raton, (2014)CrossRefGoogle Scholar
  14. 14.
    S. E. Whitmire, D. Wolpert, A. G. Markelz, J. R. Hillebrecht, J. Galan, and R. R. Birge, Biophys. J. 85, 1269 (2003).CrossRefGoogle Scholar
  15. 15.
    M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Buttner,, Appl. Phys. Lett. 80, 154 (2001).CrossRefGoogle Scholar
  16. 16.
    J. W. Waters et al.,, IEEE Trans. Geosci. Remote Sens. 44(5), 1075 (2006).CrossRefGoogle Scholar
  17. 17.
    R. Appleby, IEEE Trans. Antennas Propag. 55(11), 2944 (2007).CrossRefGoogle Scholar
  18. 18.
    S. Balci, W. Baughman, D.S. Wilbert, G. Shen, P. Kung, S. M. Kim, Solid. State. Electron. 78, 68 (2012).CrossRefGoogle Scholar
  19. 19.
    J. D. Baena, R. Marques, F. Medina, and J. Martel,, Phys. Rev. B 69, 014402 (2004).CrossRefGoogle Scholar
  20. 20.
    J. Valentine, S. Zhang, T. Zentgraf, E. U. Avila, D. A. Genov, G. Bartal, and X. Zhang,, Nature 455, 376 (2008).CrossRefGoogle Scholar
  21. 21.
    I. Bulu, H. Caglayan, and E. Ozbay,, Opt. Express 13(25), 10238 (2005).CrossRefGoogle Scholar
  22. 22.
    D. Schurig, J. J. Mock, and D. R. Smith, Appl. Phys. Lett. 88, 041109 (2006).CrossRefGoogle Scholar
  23. 23.
    J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, 339(6117), 310 (2013).Google Scholar
  24. 24.
    X. Zhang, and Z. Liu, Nature Mater. 7, 435 (2008).CrossRefGoogle Scholar
  25. 25.
    N. Landy, and D. R. Smith, Nature Mater. 12, 435 (2013).Google Scholar
  26. 26.
    E. E. Narimanov, and A. V. Kildishev, Appl. Phys, Lett. 95, 041106 (2009).CrossRefGoogle Scholar
  27. 27.
    B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis,, J. Opt. A. Pure Appl. Opt. 11 114003 (2009)CrossRefGoogle Scholar
  28. 28.
    J. Li, M. Mutlu, E. Ozbay,, J. Opt. 15, 023001 (2013)CrossRefGoogle Scholar
  29. 29.
    G. Kenanakis, E. N. Economou, C. M. Soutoulis, M. Kafesaki, EPJ Appl. Metamat. 2,15 (2015)CrossRefGoogle Scholar
  30. 30.
    Y. Q. Ye, D. Hay, and Z. M. Shi, Optics Letters, vol. 41, pp. 3359–3362 (2016).CrossRefGoogle Scholar
  31. 31.
    K. K. Xu, Z. Y. Xiao, J. Y. Tang, D. J. Liu, X. L. Ma, and Z. H. Wang, Plasmonics, vol. 11, pp. 1257–1264 (2016).CrossRefGoogle Scholar
  32. 32.
    A. Sonsilphong, P. Gutruf, W. Withayachumnankul, D. Abbott, M. Bhaskaran, S. Sriram, et al., J of Opt. vol. 17, (2015).Google Scholar
  33. 33.
    Z. Ozer, F. Dincer, M. Karaaslan, and O. Akgol, Optical Engineering, vol. 53 (2014).Google Scholar
  34. 34.
    Y. Li, Q. Huang, D. C. Wang, X. Li, M. H. Hong, and X. G. Luo, Applied Physics a-Materials Science & Processing, vol. 115, pp. 57–62, (2014).CrossRefGoogle Scholar
  35. 35.
    S. V. Zhukovsky, D. N. Chigrin, C. Kremers, and A. V. Lavrinenko, Photonics and Nanostructures-Fundamentals and Applications, vol. 11, pp. 353–361, (2013).Google Scholar
  36. 36.
    J. F. Zhou, D. R. Chowdhury, R. K. Zhao, A. K. Azad, H. T. Chen, C. M. Soukoulis, A. Taylor, J. F. O’Hara, Phys. Rev. B 86, 035448 (2012).CrossRefGoogle Scholar
  37. 37.
    Y. B. Ding, G. P. Zhang, and Y. Z. Cheng, Physica Scripta, vol. 85, (2012).Google Scholar
  38. 38.
    M. X. He, J. G. Han, Z. Tian, J. Q. Gu, and Q. R. Xing Optik, 122, pp. 1676–1679 (2011).Google Scholar
  39. 39.
    S. Waselikowski, K. Kratt, V. Badilita, U. Wallrabe, J. G. Korvink, and M. Walther, Appl. Phys. Lett. 97 (2010).Google Scholar
  40. 40.
    J. F. Wu, B. H. Ng, S. P. Turaga, M. B. H. Breese, S. A. Maier, M. H. Hong A. Bettiol, H. O. Moser, Applied Physics Letters, vol. 103 (2013).Google Scholar
  41. 41.
    J. Wu, B. Ng, H. Liang, M. B. H. Breese, M. Hong, S. A. Maier, H. O. Moser, and O. Hess, Phys. Rev. Appl. 2, pp. 1–8 (2014).Google Scholar
  42. 42.
    R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, Phys. Rev.B 80, 153105 (2009)CrossRefGoogle Scholar
  43. 43.
    N. Wongkasem, A. Akyurtlu, K. A. Marx, Q. Dong, J. Li, and W. D. Goodhue, IEEE Trans. Antennas Propag., vol. 55, no. 11 I, pp. 3052–3062, (2007).CrossRefGoogle Scholar
  44. 44.
    M. Zalkovskij, R. Malureanu, C. Kremers, D. N. Chigrin, A. Novitsky, S. Zhukovsky, et al., Laser & Photonics Reviews, vol. 7, pp. 810–817 (2013).CrossRefGoogle Scholar
  45. 45.
    N. Kanda, K. Konishi, and M. Kuwata-Gonokami, Optics Letters, vol. 37, pp. 3510–3512 (2012).CrossRefGoogle Scholar
  46. 46.
    N. Yogesh, T. Fu, F. Lan, and Z. Ouyang, IEEE Photonics J., vol. 7, no. 3, (2015).Google Scholar
  47. 47.
    J. Tang, Z. Xiao, K. Xu, X. Ma, D. Liu, and Z. Wang, Opt. Quantum Electron., vol. 48, no. 2, p. 111, (2016)CrossRefGoogle Scholar
  48. 48.
    Y. Huang, Z. Yao, Q. Wang, F. Hu, and X. Xu, Plasmonics, vol. 10, no. 4, pp. 1005–1011, (2015.)CrossRefGoogle Scholar
  49. 49.
    T. Cao, C. Wei, Y. Li, Dual-band strong extrinsic 2D chirality in a highly symmetric metal-dielectric-metal achiral metasurface. Optical Materials Express 6(2), 303–311 (2016).Google Scholar
  50. 50.
    N. Kanda, K. Konishi, and M. Kuwata-Gonokami, Opt. Express, vol. 15, no. 18, pp. 11117 (2007).CrossRefGoogle Scholar
  51. 51.
    N. Kanda, K. Konishi, and M. Kuwata-Gonokami, Opt. Lett., vol. 34, no. 19, pp. 3000 (2009).CrossRefGoogle Scholar
  52. 52.
    G. Kenanakis, R. Zhao, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, Opt. Express, vol. 22, no. 10, pp. 12149–59, (2014).CrossRefGoogle Scholar
  53. 53.
    J. B. Pendry, Science, 306 1353 (2004)CrossRefGoogle Scholar
  54. 54.
    S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, J. Electromagn. Waves Appl. 17 695–706 (2003)CrossRefGoogle Scholar
  55. 55.
    S. Tretyakov, A. Sihvola and L. Jylha, Photon. Nanostruct. Fundam. Appl. 3 107–15 (2005)CrossRefGoogle Scholar
  56. 56.
    C. Monzon and D.W. Forester, 2005Phys. Rev. Lett. 95 123904 (2005)CrossRefGoogle Scholar
  57. 57.
    N. Liu, H. Liu, S. Zhu, and H. Giessen, Nature Photon. 3, 157 (2009).CrossRefGoogle Scholar
  58. 58.
    C. Tang, Q. Wang, F. Liu, Z. Chen, and Z. Wang, Opt. Express 21(10), 11783 (2013).CrossRefGoogle Scholar
  59. 59.
    M.P. Hokmabadi, D.S. Wilbert, P. Kung, and S.M. Kim, Phys. Rev. Applied 1, 044003 (2014).CrossRefGoogle Scholar
  60. 60.
    M. P. Hokmabadi, D. S. Wilbert, P. Kung, and S. M. Kim, Proc. SPIE 8632, (2013).Google Scholar
  61. 61.
    M. P. Hokmabadi, D. S. Shawn, P Kung, S. M. Kim, Opt. Express 21(14), 16455 (2013).CrossRefGoogle Scholar
  62. 62.
    D. S. Wilbert, M. P. Hokmabadi, J. Martinez, P. Kung, and S. M. Kim, Proc. SPIE, 8585 (2013).Google Scholar
  63. 63.
    N. I. Zheludev, and Y. S. Kivshar, Nature Mater. 11, 917 (2012).CrossRefGoogle Scholar
  64. 64.
    R. Zhao, P Tassin, T. Koschny, and C. M. Souloulis, Opt. Express 18(25), 25665 (2010).CrossRefGoogle Scholar
  65. 65.
    V. Ginis, P. Tassin, C. M. Soukoulis, and I. Veretennicoff, Phys. Rev. Lett. 110, 057401–1 (2013).CrossRefGoogle Scholar
  66. 66.
    F. J. Rodroguez-Fortuno, A. Vakil, and Nader Engheta, Phys. Rev. Lett. 112, 033902–1 (2014).CrossRefGoogle Scholar
  67. 67.
    Z. J. Wang, F. Cheng, T. Winsor, and Y. M. Liu, Nanotechnol., 27, 412001 (2016).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Elizabath Philip
    • 1
  • M. Zeki Güngördü
    • 1
  • Sharmistha Pal
    • 1
  • Patrick Kung
    • 1
  • Seongsin Margaret Kim
    • 1
  1. 1.Electrical and Computer Engineering DepartmentUniversity of AlabamaTuscaloosaUSA

Personalised recommendations