Terahertz Spectrum Analysis Based on Empirical Mode Decomposition

Article

Abstract

Precise identification of terahertz absorption peaks for materials with low concentration and high attenuation still remains a challenge. Empirical mode decomposition was applied to terahertz spectrum analysis in order to improve the performance on spectral fingerprints identification. We conducted experiments on water vapor and carbon monoxide respectively with terahertz time domain spectroscopy. By comparing their absorption spectra before and after empirical mode decomposition, we demonstrated that the first-order intrinsic mode function shows absorption peaks clearly in high-frequency range. By comparing the frequency spectra of the sample signals and their intrinsic mode functions, we proved that the first-order function contains most of the original signal’s energy and frequency information so that it cannot be left out or replaced by high-order functions in spectral fingerprints detection. Empirical mode decomposition not only acts as an effective supplementary means to terahertz time-domain spectroscopy but also shows great potential in discrimination of materials and prediction of their concentrations.

Keywords

Terahertz spectroscopy Empirical mode decomposition Absorption peaks Spectrum analysis Water vapor 

References

  1. 1.
    M. Naftaly and R. E. Miles, P IEEE 95, 1658 (2007).CrossRefGoogle Scholar
  2. 2.
    H. Zhan, K. Zhao, R. Bao, and L. Xiao, J INFRARED MILLIM TE 37, 929 (2016).CrossRefGoogle Scholar
  3. 3.
    N. Palka, M. Szala, and E. Czerwinska, APPL OPTICS 55, 4575 (2016).CrossRefGoogle Scholar
  4. 4.
    H.-B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X.-C. Zhang, P IEEE 95, 1514 (2007).CrossRefGoogle Scholar
  5. 5.
    P. U. Jepsen, D. G. Cooke, and M. Koch, LASER PHOTONICS REV 5, 124 (2011).CrossRefGoogle Scholar
  6. 6.
    W. L. Chan, J. Deibel, and D. M. Mittleman, REP PROG PHYS 70, 1325 (2007).CrossRefGoogle Scholar
  7. 7.
    E. Hérault, F. Garet, and J.-L. Coutaz, IEEE T THZ SCI TECHN 6, 12 (2016).CrossRefGoogle Scholar
  8. 8.
    J. B. Sleiman, J. El Haddad, J. Perraud, L. Bassel, B. Bousquet, N. Palka, and P. Mounaix, in Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 2014 39th International Conference on (IEEE, 2014), pp. 1.Google Scholar
  9. 9.
    Z. Jin, A. Wada, J. Shin, N. Yugami, and R. Kodama, in Journal of Physics: Conference Series (IOP Publishing, 2016), p. 012040.Google Scholar
  10. 10.
    W. Tu, S. Zhong, Y. Shen, and A. Incecik, OcEng 111, 582 (2016).Google Scholar
  11. 11.
    N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (The Royal Society, 1998), pp. 903.Google Scholar
  12. 12.
    H. Deng, J. Liu, and H. Li, J INFRARED MILLIM TE 30, 1205 (2009).CrossRefGoogle Scholar
  13. 13.
    B. Weng, G. Xuan, J. Kolodzey, and K. E. Barner, in Genomic Signal Processing and Statistics, 2006. GENSIPS’06. IEEE International Workshop on (IEEE, 2006), pp. 63.Google Scholar
  14. 14.
    Z. Xu and T. Liu, EURASIP J. Adv. Signal Process 2014, 75 (2014).CrossRefGoogle Scholar
  15. 15.
    M. Van Exter, C. Fattinger, and D. Grischkowsky, OPT LETT 14, 1128 (1989).CrossRefGoogle Scholar
  16. 16.
    R. Cheville and D. Grischkowsky, J OPT SOC AM B 16, 317 (1999).CrossRefGoogle Scholar
  17. 17.
    M. Naftaly, R. Dudley, J. Fletcher, F. Bernard, C. Thomson, and Z. Tian, J OPT SOC AM B 26, 1357 (2009).CrossRefGoogle Scholar
  18. 18.
    Y. Deng, Q. Sun, and J. Yu, METROLOGIA 51, 18 (2013).CrossRefGoogle Scholar
  19. 19.
    J. Chen, Y. Chen, H. Zhao, G. J. Bastiaans, and X.-C. Zhang, OPT EXPRESS 15, 12060 (2007).CrossRefGoogle Scholar
  20. 20.
    Y. Yang, A. Shutler, and D. Grischkowsky, OPT EXPRESS 19, 8830 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of AutomationTsinghua UniversityBeijingChina

Personalised recommendations