Quantum Interference Current in InSb Injected by Intense Terahertz Radiation

  • J. Bühler
  • C. Schmidt
  • H. Schneider
  • M. Helm
  • A. Pashkin
  • D. V. SeletskiyEmail author


Understanding the response of materials to an applied charge current remains one of the central problems in solid-state physics. Push for high-bandwidth injection and readout of electric currents in semiconductors has seeded the revolution in THz science and technology [1, 2]. Optical injection of current enhances the bandwidth but generally relies on either an intrinsic non-centrosymmetry in the material or an applied external bias, in other words an even-order nonlinearity [3]. In contrast, optical generation and control of the directionality of charge current in semiconductors exhibiting complete inversion symmetry is only possible by a symmetry break in the incident field itself, e.g., when the maximal field amplitude in one polarity is different from that in the opposite direction. One way to achieve this is via a phase-stable single-cycle pulse with controlled carrier-envelope phase [4, 5]. Here, the necessity for a short duration of the pulse envelope also sets the...


InSb Second Harmonic Gold Contact Indium Antimonide Relative Phase Modulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge the FELBE team for excellent and timely support during the measurement shifts. Denis Seletskiy acknowledges support by the Zukunftskolleg of the University of Konstanz, Landestiftung Baden-Württemberg and BW MWK RiSC Programm. Johannes Bühler acknowledges support by the Carl Zeiss Stiftung.


  1. 1.
    D. H. Auston and P. R. Smith, Appl. Phys. Lett. 43, 631 (1983).CrossRefGoogle Scholar
  2. 2.
    M. Tonouchi, Nat. Photon. 1, 97 (2007).CrossRefGoogle Scholar
  3. 3.
    J. B. Khurgin, J. Nonlinear Opt. Phys. 4, 163 (1995).CrossRefGoogle Scholar
  4. 4.
    G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, Nat. Photonics 4, 33 (2010).CrossRefGoogle Scholar
  5. 5.
    T. Rybka, M. Ludwig, M. F. Schmalz, V. Knittel, D. Brida, and A. Leitenstorfer, Nat. Photonics 10, 10 667 (2016).CrossRefGoogle Scholar
  6. 6.
    E. Dupont, P. B. Corkum, H. C. Liu, M. Buchanan, and Z. R. Wasilewski, Phys. Rev. Lett. 74, 3596 (1995).CrossRefGoogle Scholar
  7. 7.
    R. Atanasov, A. Haché, J. L. P. Hughes, H. M. van Driel, and J. E. Sipe, Phys. Rev. Lett. 76, 1703 (1996).CrossRefGoogle Scholar
  8. 8.
    A. Haché, Y. Kostoulas, R. Atanasov, J. L. P. Hughes, J. E. Sipe, and H. M. van Driel, Phys. Rev. Lett. 78, 306 (1997).CrossRefGoogle Scholar
  9. 9.
    C. Schmidt, J. Bühler, B. Mayer, A. Pashkin, A. Leitenstorfer, and D. V Seletskiy, J. Opt. 18, 5 26 (2016).CrossRefGoogle Scholar
  10. 10.
    D. N. Basov, R. D. Averitt, D. van der Marel, M. Dressel, and K. Haule, Rev. Mod. Phys. 83, 471 (2011).CrossRefGoogle Scholar
  11. 11.
    K. W. Kim, A. Pashkin, H. Schäfer, M. Beyer, M. Porer, T. Wolf, C. Bernhard, J. Demsar, R. Huber, and A. Leitenstorfer, Nature Mater. 11, 497 (2012).CrossRefGoogle Scholar
  12. 12.
    M. Först, R. Mankowsky, and A. Cavalleri, Acc. Chem. Res. 48, 380 (2015).CrossRefGoogle Scholar
  13. 13.
    M. Sheik-Bahae, Phys. Rev. B 60, R11 257 (1999).CrossRefGoogle Scholar
  14. 14.
    G. W. Gobeli and H. Y. Fan, Phys. Rev. 119, 613 (1960).CrossRefGoogle Scholar
  15. 15.
    K. Kato, F. Tanno, and N. Umemura, Appl. Opt. 52, 2325 (2013).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • J. Bühler
    • 1
  • C. Schmidt
    • 1
  • H. Schneider
    • 2
  • M. Helm
    • 2
  • A. Pashkin
    • 2
  • D. V. Seletskiy
    • 1
    Email author
  1. 1.Department of Physics and Center for Applied PhotonicsUniversity of KonstanzKonstanzGermany
  2. 2.Helmholtz-Zentrum Dresden-RossendorfInstitute of Ion Beam Physics and Materials ResearchDresdenGermany

Personalised recommendations