Journal of Infrared, Millimeter, and Terahertz Waves

, Volume 38, Issue 9, pp 1162–1178 | Cite as

Fiber-Drawn Metamaterial for THz Waveguiding and Imaging

  • Shaghik AtakaramiansEmail author
  • Alessio Stefani
  • Haisu Li
  • Md. Samiul Habib
  • Juliano Grigoleto Hayashi
  • Alessandro Tuniz
  • Xiaoli Tang
  • Jessienta Anthony
  • Richard Lwin
  • Alexander Argyros
  • Simon C. Fleming
  • Boris T. Kuhlmey


In this paper, we review the work of our group in fabricating metamaterials for terahertz (THz) applications by fiber drawing. We discuss the fabrication technique and the structures that can be obtained before focusing on two particular applications of terahertz metamaterials, i.e., waveguiding and sub-diffraction imaging. We show the experimental demonstration of THz radiation guidance through hollow core waveguides with metamaterial cladding, where substantial improvements were realized compared to conventional hollow core waveguides, such as reduction of size, greater flexibility, increased single-mode operating regime, and guiding due to magnetic and electric resonances. We also report recent and new experimental work on near- and far-field THz imaging using wire array metamaterials that are capable of resolving features as small as λ/28.


Metamaterials Terahertz Waveguide Imaging Wire array Fiber drawing 



The work was supported in part by Australian Research Council (ARC), Centre of Excellence scheme CUDOS (CE110001018), and ARC under the Discovery Early Career Project Award number DE140100614 and Discovery Project DP140104116. This work was performed in part at the Optofab node of the Australian National Fabrication Facility (ANFF), using NCIRS and NSW State Government funding. A.S. acknowledges support of the Eugen Lommel Stipend and Marie Sklodowska-Curie grant of the European Union’s Horizon 2020 research and innovation program (708860).


  1. 1.
    M. Tonouchi, Nat. Photon. 1, 97 (2007).CrossRefGoogle Scholar
  2. 2.
    P. U. Jepsen, D. G. Cooke, M. Koch, Laser Photon. Rev. 5, 124 (2011).CrossRefGoogle Scholar
  3. 3.
    R. D. Averitt, A. J. Taylor, J. Phys. Condens. Matter 14, R1357 (2002).CrossRefGoogle Scholar
  4. 4.
    B. Ferguson and X. C. Zhang, Nat. Mater. 1, 26 (2002).CrossRefGoogle Scholar
  5. 5.
    M. Nagel, M. Först, H. Kurz, J. Phys. Condens. Matter 18, S601-S618 (2006).CrossRefGoogle Scholar
  6. 6.
    H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, Laser Photon. Rev. 5, 513 (2011).CrossRefGoogle Scholar
  7. 7.
    W. Withayachumnankul, D. Abbott, IEEE Photon. J. 1, 99 (2009).CrossRefGoogle Scholar
  8. 8.
    D. R. Smith, J. B. Pendry, M. C. Wiltshire, Science 305, 788 (2004).CrossRefGoogle Scholar
  9. 9.
    D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, Science 314, 977 (2006).CrossRefGoogle Scholar
  10. 10.
    G. Shvets, S. Trendafilov, J. B. Pendry, A. Sarychev, Phys. Rev. Lett. 99, 053903 (2007).CrossRefGoogle Scholar
  11. 11.
    S. Jahani, Z. Jacob, Optica 1, 96 (2014).CrossRefGoogle Scholar
  12. 12.
    D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, S. Schultz, Appl. Phys. Lett. 83, 201 (2003).CrossRefGoogle Scholar
  13. 13.
    B. D. F. Casse, H. O. Moser, L. K. Jian, M. Bahou, O. Wilhelmi, B. T. Saw, P. D. Gu, J. Phys.: Conf. Ser. 34, 885 (2006).Google Scholar
  14. 14.
    J.R. Wendt, D.B. Burckel, G.A. Ten Eyck, A.R. Ellis, I. Brener, and M.B. Sinclair, J. Vac. Sci. Technol. B 28, C6O30-C6O33 (2010).Google Scholar
  15. 15.
    A. Reyes-Coronado, M.F. Acosta, R.I. Merino, V.M. Orera, G. Kenanakis, N. Katsarakis, M. Kafesaki, C. Mavidis, J.G. de Abajo, E.N. Economou, and C.M. Soukoulis, Opt. Express 20, 14663–14682 (2012).CrossRefGoogle Scholar
  16. 16.
    P. Russell, Science 299, 358 (2003).CrossRefGoogle Scholar
  17. 17.
    A. Argyros, J. Lightwave Technol. 27, 1571 (2009).CrossRefGoogle Scholar
  18. 18.
    G. F. Taylor, Phys. Rev. 23, 655 (1924).CrossRefGoogle Scholar
  19. 19.
    I. W. Donald, B. L. Metcalfe, J. Mater. Sci. 31, 1139 (1996).CrossRefGoogle Scholar
  20. 20.
    J. Hou, D. Bird, A. George, S. Maier, B.T. Kuhlmey, and J.C. Knight, Opt. Express 16, 5983–5990 (2008).CrossRefGoogle Scholar
  21. 21.
    A. Argyros, ISRN Optics 2013, 785162 (2013).CrossRefGoogle Scholar
  22. 22.
    K. Cook, J. Canning, S. Leon-Saval, Z. Reid, M. Hossain, J. Comatti, Y. Luo, and G. Peng, Opt. Lett. 40, 3966–3969 (2015).CrossRefGoogle Scholar
  23. 23.
    D.R. Smith and D. Schurig, Phys. Rev Lett. 90, 077405–077405 (2003).CrossRefGoogle Scholar
  24. 24.
    A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, Nat. Photon. 7, 948–957 (2013).CrossRefGoogle Scholar
  25. 25.
    A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, S. C. Fleming, Appl. Phys. Lett. 96, 191101 (2010).CrossRefGoogle Scholar
  26. 26.
    O. T. Naman, M. R. New-Tolley, R. Lwin, A. Tuniz, A. H. Al-Janabi, I. Karatchevtseva, S. C. Fleming, B. T. Kuhlmey, A. Argyros, Adv. Opt. Mater. 1, 971 (2013).CrossRefGoogle Scholar
  27. 27.
    A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, B. T. Kuhlmey, J. Vis. Exp. 68, e4299 (2012).Google Scholar
  28. 28.
    Lord Rayleigh Sec R.S, Philos. Mag. 34, 145 (1892).CrossRefGoogle Scholar
  29. 29.
    A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, B. T. Kuhlmey, Nat. Commun. 4, 2706 (2013).CrossRefGoogle Scholar
  30. 30.
    A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, E. M. Pogson, E. Constable, R. A. Lewis, and B. T. Kuhlmey, Opt. Express 19, 16480 (2011)CrossRefGoogle Scholar
  31. 31.
    N. Singh, A. Tuniz, R. Lwin, S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, Opt. Mater. Express 2, 1254 (2012).CrossRefGoogle Scholar
  32. 32.
    A. Wang, A. Tuniz, P. G. Hunt, E. M. Pogson, R. A. Lewis, A. Bendavid, S. C. Fleming, B. T. Kuhlmey, and M. C. J. Large, Opt. Mater. Express 1, 115 (2011).CrossRefGoogle Scholar
  33. 33.
    A. Tuniz, B. Pope, A. Wang, M. C. J. Large, S. Atakaramians, S. Min, E. M. Pogson, R. A. Lewis, A. Bendavid, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, Opt. Express 20, 11924 (2012)CrossRefGoogle Scholar
  34. 34.
    S. Fleming, A. Stefani, X. Tang, A. Argyros, D. Kemsley, J. Cordi, R. Lwin, arXiv:1703.07032 (2017).Google Scholar
  35. 35.
    J. G. Hayashi, R. Lwin, A. Stefani, S. Fleming, A. Argyros, B. T. Kuhlmey, in 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Copenhagen, 2016, pp. 1–2.Google Scholar
  36. 36.
    A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, B. M. A. Rahman, IEEE J. Sel. Top. Quantum Electron. 22, 365 (2016).CrossRefGoogle Scholar
  37. 37.
    A. Markov, H. Guerboukha, M. Skorobogatiy, J. Opt. Soc. Am. B 31, 2587 (2014).CrossRefGoogle Scholar
  38. 38.
    S. Atakaramians, S. V. Afshar, T. M. Monro, D. Abbott, Adv. Opt. Photonics 5, 169 (2013).CrossRefGoogle Scholar
  39. 39.
    K. Wang, D. M. Mittleman, Nature 432, 376 (2004).CrossRefGoogle Scholar
  40. 40.
    G. Gallot, S. P. Jamison, R. W. McGowan, D. Grischkowsky, J. Opt. Soc. Am. B 17, 851 (2000).CrossRefGoogle Scholar
  41. 41.
    M. Navarro-Cía, J. E. Melzer, J. A. Harrington, O. Mitrofanov, J. Infrared Millim. Terahz. Waves 36, 542 (2015).CrossRefGoogle Scholar
  42. 42.
    J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, C.-K. Sun, Appl. Phys. Lett. 92, 064105 (2008).CrossRefGoogle Scholar
  43. 43.
    H. Bao, K. Nielsen, O. Bang, P. U. Jepsen, Sci. Rep. 5, 7620 (2015).CrossRefGoogle Scholar
  44. 44.
    N. Yudasari, J. Anthony, R. Leonhardt, Opt. Express 22, 26042 (2014).CrossRefGoogle Scholar
  45. 45.
    J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, Opt Express 19, 18470 (2011).CrossRefGoogle Scholar
  46. 46.
    S. Atakaramians, A. Argyros, S. C. Fleming, B. T. Kuhlmey, J. Opt. Soc. Am. B 29, 2462 (2012).CrossRefGoogle Scholar
  47. 47.
    S. Atakaramians, A. Argyros, S. C. Fleming, B. T. Kuhlmey, J. Opt. Soc. Am. B 30, 851 (2013).CrossRefGoogle Scholar
  48. 48.
    M. Yan, N. A. Mortensen, Opt. Express 17, 14851 (2009).CrossRefGoogle Scholar
  49. 49.
    S. Atakaramians, B. T. Kuhlmey, Opt. Lett. 41, 3379 (2016).CrossRefGoogle Scholar
  50. 50.
    H. Li, S. Atakaramians, B. T. Kuhlmey, Proc. SPIE 8205, 96680H (2015).Google Scholar
  51. 51.
    H. Li, S. Atakaramians, R. Lwin, X. Tang, Z. Yu, A. Argyros, B. T. Kuhlmey, Optica 3, 941 (2016).CrossRefGoogle Scholar
  52. 52.
    H. Li, G. Ren, S. Atakaramians, B. T. Kuhlmey, S. Jian, Opt. Lett. 41, 4004 (2016).CrossRefGoogle Scholar
  53. 53.
    A. Stefani, R. Lwin and A. Argyros, in 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Copenhagen, 2016, pp. 1–2.Google Scholar
  54. 54.
    N. M. Litchinitser, A. K. Abeeluck, C. Headley, B. J. Eggleton, Opt. Lett. 27, 1592 (2002)CrossRefGoogle Scholar
  55. 55.
    Francesco Poletti, Opt. Express 22, 23807 (2014)CrossRefGoogle Scholar
  56. 56.
    V. Setti, L. Vincetti, A. Argyros, Opt. Express 21, 3388 (2013)CrossRefGoogle Scholar
  57. 57.
    A. L. S CruzI, V Serrao, C. L Barbosa, M. A. R Franco, C. M. B Cordeiro, A. A Argyros, X. Tang, J. Microwaves. Optoelectron. Electromagn. Appl. 14, 45 (2015).Google Scholar
  58. 58.
    X. Tang, B. T. Kuhlmey, A. Stefani, A. Tuniz, S. C. Fleming, A. Argyros, J. Lightwave Technol. 34, 5317 (2016).CrossRefGoogle Scholar
  59. 59.
    W. N. Hardy, L. A. Whitehead, Rev. Sci. Instrum. 52, 213 (1981).CrossRefGoogle Scholar
  60. 60.
    P. Gay-Balmaz, O. J. F. Martin, J. Appl. Phys. 92, 2929 (2002).CrossRefGoogle Scholar
  61. 61.
    N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, C. M. Soukoulis, Appl. Phys. Lett. 84, 2943 (2004).CrossRefGoogle Scholar
  62. 62.
    X. Tang, B. Kuhlmey, A. Tuniz, S. Fleming, A. Argyros, in Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), OSA Technical Digest (online) (Optical Society of America), 2016, paper ATh3C.4.Google Scholar
  63. 63.
    A. Tuniz, D. Ireland, L. Poladian, A. Argyros, C. Martijn de Sterke, B. T. Kuhlmey, Opt. Lett. 39, 3286 (2014).CrossRefGoogle Scholar
  64. 64.
    K. J. Kaltenecker, A. Tuniz, S. C. Fleming, A. Argyros, B. T. Kuhlmey, M. Walther, B. M. Fischer, Optica 3, 458 (2016).CrossRefGoogle Scholar
  65. 65.
    A. Tuniz, B. T. Kuhlmey, Sci. Rep. 5, 17690 (2015).CrossRefGoogle Scholar
  66. 66.
    P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, Y. Hao, Appl. Phys. Lett. 89, 262109 (2006).CrossRefGoogle Scholar
  67. 67.
    M. G. Silveirinha, P. A. Belov, C. R. Simovski, Phys. Rev. B 75, 035108 (2007).CrossRefGoogle Scholar
  68. 68.
    X. Li, S. He, Y. Jin, Phys. Rev. B 75, 045103 (2007).Google Scholar
  69. 69.
    R. Kotynski, T. Stefaniuk, J. Opt. A 11, 015001 (2009).CrossRefGoogle Scholar
  70. 70.
    M.S. Habib, A. Tuniz, K.J. Kaltenecker, Q. Chateiller, I. Perrin, S. Atakaramians, S.C. Fleming, A. Argyros, B.T. Kuhlmey, Opt. Express 24, 17989 (2016).CrossRefGoogle Scholar
  71. 71.
    J. G. Hayashi, S. Fleming, B. T. Kuhlmey, and A. Argyros, Opt. Express 23, 29867 (2015).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Shaghik Atakaramians
    • 1
    Email author
  • Alessio Stefani
    • 1
    • 2
  • Haisu Li
    • 1
    • 3
  • Md. Samiul Habib
    • 1
  • Juliano Grigoleto Hayashi
    • 1
  • Alessandro Tuniz
    • 1
  • Xiaoli Tang
    • 1
  • Jessienta Anthony
    • 1
  • Richard Lwin
    • 1
  • Alexander Argyros
    • 1
  • Simon C. Fleming
    • 1
  • Boris T. Kuhlmey
    • 1
    • 4
  1. 1.Institute of Photonics and Optical Science, School of PhysicsThe University of SydneySydneyAustralia
  2. 2.DTU Fotonik, Department of Photonics EngineeringTechnical University of DenmarkKgs. LyngbyDenmark
  3. 3.Key Laboratory of All Optical Network and Advanced Telecommunication Network of EMC, Institute of Lightwave TechnologyBeijing Jiaotong UniversityBeijingChina
  4. 4.Centre for Ultrahigh Bandwidth Devices for Optical Systems (CUDOS)The University of SydneySydneyAustralia

Personalised recommendations