Journal of Infrared, Millimeter, and Terahertz Waves

, Volume 38, Issue 9, pp 1067–1084 | Cite as

Recent Progress in Terahertz Metasurfaces

Article

Abstract

In the past decade, the concept of metasurfaces has gradually dominated the field of metamaterials owing to their fascinating optical properties and simple planar geometries. At terahertz frequencies, the concept has been driven further by the availability of advanced micro-fabrication technologies that deliver sub-micron accuracy, well below the terahertz wavelengths. Furthermore, terahertz spectrometers with high dynamic range and amplitude and phase sensitivity provide valuable information for the study of metasurfaces in general. In this paper, we review recent progress in terahertz metasurfaces mainly in the last 5 years. The first part covers nonuniform metasurfaces that perform beamforming in reflection and transmission. In addition, we briefly overview four different methodologies that can be utilized in realizing high-quality-factor metasurfaces. We also describe two recent approaches to tuning the frequency response of terahertz metasurfaces using graphene as an active medium. Finally, we provide a brief summary and outlook for future developments in this rapidly progressing field.

Keywords

Metasurfaces Beamforming Fano resonance Electrically induced transparency Graphene Tunability 

References

  1. 1.
    D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Physical Review Letters, vol. 84, no. 18, pp. 4184–4187, 2000.Google Scholar
  2. 2.
    J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D.A. Genov, G. Bartal, and X. Zhang, Three-dimensional optical metamaterial with a negative refractive index, Nature, vol. 455, no. 7211, pp. 376–379, 2008.Google Scholar
  3. 3.
    N. Fang, Sub-diffraction-limited optical imaging with a silver superlens, Science, vol. 308, no. 5721, pp. 534–537, 2005.Google Scholar
  4. 4.
    D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, and D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies, Science, vol. 314, no. 5801, pp. 977–980, 2006.Google Scholar
  5. 5.
    W. Withayachumnankul and D. Abbott, Metamaterials in the terahertz regime, IEEE Photonics Journal, vol. 1, no. 2, pp. 99–118, 2009.Google Scholar
  6. 6.
    J. Huang and J.A. Encinar, Reflectarray Antennas. Wiley-IEEE Press, 2007.Google Scholar
  7. 7.
    N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction, Science, vol. 334, no. 6054, pp. 333–337, 2011.Google Scholar
  8. 8.
    N. Papasimakis, V.A. Fedotov, N.I. Zheludev, and S. Prosvirnin, Metamaterial analog of electromagnetically induced transparency, Physical Review Letters, vol. 101, no. 25, p. 253903, 2008.Google Scholar
  9. 9.
    P. Tassin, L. Zhang, T. Koschny, E.N. Economou, and C.M. Soukoulis, Low-loss metamaterials based on classical electromagnetically induced transparency, Physical Review Letters, vol. 102, no. 5, p. 053901, 2009.Google Scholar
  10. 10.
    T. Kaelberer, V.A. Fedotov, N. Papasimakis, D.P. Tsai, and N.I. Zheludev, Toroidal dipolar response in a metamaterial, Science, vol. 330, no. 6010, pp. 1510–1512, 2010.Google Scholar
  11. 11.
    C. Jansen, I.A.I. Al-Naib, N. Born, and M. Koch, Terahertz metasurfaces with high Q-factors, Applied Physics Letters, vol. 98, no. 5, p. 051109, 2011.Google Scholar
  12. 12.
    W. Cao, R. Singh, I.A.I. Al-Naib, M. He, A.J. Taylor, and W. Zhang, Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials, Optics Letters, vol. 37, no. 16, pp. 3366–3368, 2012.Google Scholar
  13. 13.
    Y. Chen, I.A.I. Al-Naib, J. Gu, M. Wang, T. Ozaki, R. Morandotti, and W. Zhang, Membrane metamaterial resonators with a sharp resonance: A comprehensive study towards practical terahertz filters and sensors, AIP Advances, vol. 2, p. 022109, 2012.Google Scholar
  14. 14.
    Y.K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, Ultrahigh-Q Fano resonances in terahertz metasurfaces: Strong influence of metallic conductivity at extremely low asymmetry, Advanced Optical Materials, vol. 4, no. 3, pp. 457–463, 2016.Google Scholar
  15. 15.
    L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H.A. Bechtel, X. Liang, A. Zettl, Y.R. Shen, and F. Wang, Graphene plasmonics for tunable terahertz metamaterials, Nature Nanotechnology, vol. 6, pp. 630–634, 2011.Google Scholar
  16. 16.
    S.H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H.K. Choi, S.S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, Switching terahertz waves with gate-controlled active graphene metamaterials, Nature Materials, vol. 11, no. 11, pp. 936–941, 2012.Google Scholar
  17. 17.
    P.Q. Liu, I.J. Luxmoore, S.A. Mikhailov, N.A. Savostianova, F. Valmorra, J. Faist, and G.R. Nash, Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons, Nature Communications, vol. 6, p. 8969, 2015.Google Scholar
  18. 18.
    Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces, Physical Review X, vol. 5, no. 4, pp. 1–13, 2015.Google Scholar
  19. 19.
    T. Nagatsuma, G. Ducournau, and C.C. Renaud, Advances in terahertz communications accelerated by photonics, Nature Photonics, vol. 10, no. 6, pp. 371–379, 2016.Google Scholar
  20. 20.
    A.A. Tavallaee, B.S. Williams, P.W.C. Hon, T. Itoh, and Q.-S. Chen, Terahertz quantum-cascade laser with active leaky-wave antenna, Applied Physics Letters, vol. 99, no. 14, p. 141115, 2011.Google Scholar
  21. 21.
    H.-T. Chen, A.J. Taylor, and N. Yu, A review of metasurfaces: physics and applications, Reports on Progress in Physics, vol. 79, no. 7, p. 076401, 2016.Google Scholar
  22. 22.
    K. Murano, I. Watanabe, A. Kasamatsu, S. Suzuki, M. Asada, W. Withayachumnankul, T. Tanaka, and Y. Monnai, Low-profile terahertz radar based on broadband leaky-wave beam steering, IEEE Transactions on Terahertz Science and Technology, vol. 7, no. 1, pp. 60–69, 2017. Google Scholar
  23. 23.
    S. Larouche and D.R. Smith, Reconciliation of generalized refraction with diffraction theory, Optics Letters, vol. 37, no. 12, pp. 2391–2393, 2012.Google Scholar
  24. 24.
    T. Niu, W. Withayachumnankul, B. S.-Y. Ung, H. Menekse, M. Bhaskaran, S. Sriram, and C. Fumeaux, Experimental demonstration of reflectarray antennas at terahertz frequencies, Optics Express, vol. 21, no. 3, pp. 2875–2889, 2013.Google Scholar
  25. 25.
    T. Niu, W. Withayachumnankul, A. Upadhyay, P. Gutruf, D. Abbott, M. Bhaskaran, S. Sriram, and C. Fumeaux, Terahertz reflectarray as a polarizing beam splitter, Optics Express, vol. 22, no. 13, pp. 16148–16160, 2014.Google Scholar
  26. 26.
    T. Niu, A. Upadhyay, W. Withayachumnankul, D. Headland, D. Abbott, M. Bhaskaran, S. Sriram, and C. Fumeaux, Polarization-dependent thin-film wire-grid reflectarray for terahertz waves, Applied Physics Letters, vol. 107, no. 3, p. 031111, 2015.Google Scholar
  27. 27.
    H. Hasani, S. Capdevila, M. Tamagnone, C. Moldovan, W.A. Vitale, A.M. Ionescu, C. Peixeiro, A. Skrivervik, and J.R. Mosig, Dual-band terahertz reflectarray integrated on a silicon substrate, in International Symposium on Antennas and Propagation (ISAP), pp. 120–121. IEEE, 2016.Google Scholar
  28. 28.
    H. Hasani, M. Tamagnone, S. Capdevila, C.F. Moldovan, P. Maoddi, A.M. Ionescu, C. Peixeiro, J.R. Mosig, A.K. Skrivervik, and J. Perruisseau-Carrier, Tri-band, polarization-independent reflectarray at terahertz frequencies: design, fabrication, and measurement, IEEE Transactions on Terahertz Science and Technology, vol. 6, no. 2, pp. 268–277, 2016.Google Scholar
  29. 29.
    E. Carrasco and J. Perruisseau-Carrier, Reflectarray antenna at terahertz using graphene, IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 253–256, 2013.Google Scholar
  30. 30.
    S.A. Kuznetsov, M.A. Astafev, M. Beruete, and M. Navarro-Cía, Planar holographic metasurfaces for terahertz focusing, Scientific Reports, vol. 5, p. 7738, 2015.Google Scholar
  31. 31.
    D. Headland, S. Nirantar, W. Withayachumnankul, P. Gutruf, D. Abbott, M. Bhaskaran, C. Fumeaux, and S. Sriram, Terahertz magnetic mirror realized with dielectric resonator antennas, Advanced Materials, vol. 27, no. 44, pp. 7137–7144, 2015.Google Scholar
  32. 32.
    D. Headland, E. Carrasco, S. Nirantar, W. Withayachumnankul, P. Gutruf, J. Schwarz, D. Abbott, M. Bhaskaran, S. Sriram, J. Perruisseau-Carrier, and C. Fumeaux, Dielectric resonator reflectarray as high-efficiency nonuniform terahertz metasurface, ACS Photonics, vol. 3, no. 6, pp. 1019–1026, 2016.Google Scholar
  33. 33.
    X. Su, C. Ouyang, N. Xu, W. Cao, X. Wei, G. Song, J. Gu, Z. Tian, J.F. O’Hara, J. Han, and W. Zhang, Active metasurface terahertz deflector with phase discontinuities, Optics Express, vol. 23, no. 21, pp. 27152–27158, 2015.Google Scholar
  34. 34.
    C.G.M. Ryan, M.R. Chaharmir, J. Shaker, J.R. Bray, Y.M.M. Antar, and A. Ittipiboon, A wideband transmitarray using dual-resonant double square rings, IEEE Transactions on Antennas and Propagation, vol. 58, no. 5, pp. 1486–1493, 2010.Google Scholar
  35. 35.
    C. Pfeiffer and A. Grbic, Millimeter-wave transmitarrays for wavefront and polarization control, IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 12, pp. 4407–4417, 2013.Google Scholar
  36. 36.
    Q. Yang, J. Gu, D. Wang, X. Zhang, Z. Tian, C. Ouyang, R. Singh, J. Han, and W. Zhang, Efficient flat metasurface lens for terahertz imaging, Optics Express, vol. 22, no. 21, pp. 25931–25939, 2014.Google Scholar
  37. 37.
    G. Liu, H. Wang, J. Jiang, and F. Xue, Terahertz substrateless transmitarray antenna design and microfabrication, Microwave and Optical Technology Letters, vol. 58, no. 9, pp. 2096–2100, 2016.Google Scholar
  38. 38.
    J. Luo, H. Yu, M. Song, and Z. Zhang, Highly efficient wavefront manipulation in terahertz based on plasmonic gradient metasurfaces, Optics Letters, vol. 39, no. 8, pp. 2229–2231, 2014.Google Scholar
  39. 39.
    J. He, X. Wang, D. Hu, J. Ye, S. Feng, Q. Kan, and Y. Zhang, Generation and evolution of the terahertz vortex beam, Optics Express, vol. 21, no. 17, pp. 20230–20239, 2013.Google Scholar
  40. 40.
    X.-Y. Jiang, J.-S. Ye, J.-W. He, X.-K. Wang, D. Hu, S.-F. Feng, Q. Kan, and Y. Zhang, An ultrathin terahertz lens with axial long focal depth based on metasurfaces, Optics Express, vol. 21, no. 24, pp. 30030–30038, 2013.Google Scholar
  41. 41.
    D. Hu, G. Moreno, X. Wang, J. He, A. Chahadih, Z. Xie, B. Wang, T. Akalin, and Y. Zhang, Dispersion characteristic of ultrathin terahertz planar lenses based on metasurface, Optics Communications, vol. 322, pp. 164–168, 2014.Google Scholar
  42. 42.
    X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities, Advanced Materials, vol. 25, no. 33, pp. 4567–4572, 2013.Google Scholar
  43. 43.
    Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, A broadband metasurface-based terahertz flat-lens array, Advanced Optical Materials, vol. 3, no. 6, pp. 779–785, 2015.Google Scholar
  44. 44.
    J. He, J. Ye, X. Wang, Q. Kan, and Y. Zhang, A broadband terahertz ultrathin multi-focus lens, Scientific Reports, vol. 6, p. 28800, 2016.Google Scholar
  45. 45.
    J. Ding, N. Xu, H. Ren, Y. Lin, W. Zhang, and H. Zhang, Dual-wavelength terahertz metasurfaces with independent phase and amplitude control at each wavelength, Scientific Reports, vol. 6, p. 34020, 2016.Google Scholar
  46. 46.
    N.K. Grady, J.E. Heyes, D.R. Chowdhury, Y. Zeng, M.T. Reiten, A.K. Azad, A.J. Taylor, D.A.R. Dalvit, and H.-T. Chen, Terahertz metamaterials for linear polarization conversion and anomalous refraction, Science, vol. 340, no. 6138, pp. 1304–1307, 2013.Google Scholar
  47. 47.
    J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, Terahertz tunable metasurface lens based on vanadium dioxide phase transition, Plasmonics, vol. 11, no. 5, pp. 1285–1290, 2016.Google Scholar
  48. 48.
    E. Carrasco, M. Tamagnone, and J. Perruisseau-Carrier, Tunable graphene reflective cells for THz reflectarrays and generalized law of reflection, Applied Physics Letters, vol. 102, no. 10, p. 104103, 2013.Google Scholar
  49. 49.
    T. Yatooshi, A. Ishikawa, and K. Tsuruta, Terahertz wavefront control by tunable metasurface made of graphene ribbons, Applied Physics Letters, vol. 107, no. 5, p. 053105, 2015.Google Scholar
  50. 50.
    L. Liu, Y. Zarate, H.T. Hattori, D.N. Neshev, I.V. Shadrivov, and D.A. Powell, Terahertz focusing of multiple wavelengths by graphene metasurfaces, Applied Physics Letters, vol. 108, no. 3, p. 031106, 2016.Google Scholar
  51. 51.
    J.F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A.J. Taylor, and W. Zhang, Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations, Optics Express, vol. 16, no. 3, pp. 1786–1795, 2008.Google Scholar
  52. 52.
    J.F. O’Hara, W. Withayachumnankul, and I. Al-Naib, A review on thin-film sensing with terahertz waves, Journal of Infrared, Millimeter, and Terahertz Waves, vol. 33, pp. 245–291, 2012.Google Scholar
  53. 53.
    W. Withayachumnankul, J.F. O’Hara, W. Cao, I. Al-Naib, and W. Zhang, Limitation in thin-film sensing with transmission-mode terahertz time-domain spectroscopy, Optics Express, vol. 22, no. 1, pp. 972–986, 2014.Google Scholar
  54. 54.
    I. Al-Naib, Biomedical sensing with conductively coupled terahertz metamaterial resonators, IEEE Journal of Selected Topics in Quantum Electronics, vol. 23, no. 4, p. 4700405, 2017.Google Scholar
  55. 55.
    N. Papasimakis and N.I. Zheludev, Metamaterial-induced transparency: sharp Fano resonances and slow light, Optics and Photonics News, vol. 20, no. 10, p. 22, 2009.Google Scholar
  56. 56.
    C. Wu, A.B. Khanikaev, and G. Shvets, Slow light metamaterial based on a double-continuum Fano resonance, Physical Review Letters, vol. 106, p. 107403, 2011.Google Scholar
  57. 57.
    L. Zhu, F.-Y. Meng, J.-H. Fu, Q. Wu, and J. Hua, Multi-band slow light metamaterial, Optics Express, vol. 20, no. 4, pp. 4494–4502, 2012.Google Scholar
  58. 58.
    I. Al-Naib, C. Jansen, R. Singh, M. Walther, and M. Koch, Novel THz metamaterial designs: from near- and far-Field coupling to high-Q resonances, IEEE Transactions on Terahertz Science and Technology, vol. 3, no. 6, pp. 772–782, 2013.Google Scholar
  59. 59.
    R. Singh, I. Al-Naib, W. Cao, C. Rockstuhl, M. Koch, and W. Zhang, The Fano resonance in symmetry broken terahertz metamaterials, IEEE Transactions on Terahertz Science and Technology, vol. 3, no. 6, pp. 820–826, 2013.Google Scholar
  60. 60.
    P.H. Bolivar, M. Brucherseifer, M. Nagel, H. Kurz, A. Bosserhoff, and R. Bu̇ttner, Label-free probing of genes by time-domain terahertz sensing, Physics in Medicine and Biology, vol. 47, no. 21, pp. 3815–3821, 2002.Google Scholar
  61. 61.
    A.J. Qavi, A.L. Washburn, J.-Y. Byeon, and R.C. Bailey, Label-free technologies for quantitative multiparameter biological analysis, Analytical and Bioanalytical Chemistry, vol. 394, no. 1, pp. 121–135, 2009.Google Scholar
  62. 62.
    T. Hasebe, Y. Yamada, and H. Tabata, Label-free THz sensing of living body-related molecular binding using a metallic mesh, Biochemical and Biophysical Research Communications, vol. 414, no. 1, pp. 192–198, 2011.Google Scholar
  63. 63.
    Y.C. Lai, H.C. Lee, S.W. Kuo, C.K. Chen, H.T. Wu, O.K. Lee, and T.J. Yen, Label-free, coupler-free, scalable and intracellular bio-imaging by multimode plasmonic resonances in split-ring resonators, Advanced Materials, vol. 24, no. 23, pp. 148–152, 2012.Google Scholar
  64. 64.
    I. Al-Naib, G. Sharma, M.M. Dignam, H. Hafez, A. Ibrahim, D.G. Cooke, T. Ozaki, and R. Morandotti, Effect of local field enhancement on the nonlinear terahertz response of a silicon-based metamaterial, Physical Review B, vol. 88, no. 19, p. 195203, 2013.Google Scholar
  65. 65.
    H.Y. Hwang, S. Fleischer, N.C. Brandt, B.G. Perkins, M. Liu, K. Fan, A. Sternbach, X. Zhang, R.D. Averitt, and K.A. Nelson, A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses, Journal of Modern Optics, vol. 0340, pp. 1–33, 2014.Google Scholar
  66. 66.
    A. Bitzer, J. Wallauer, H. Merbold, H. Helm, T. Feurer, and M. Walther, Lattice modes mediate radiative coupling in metamaterial arrays, Optics Express, vol. 17, no. 24, pp. 22108–22113, 2009.Google Scholar
  67. 67.
    R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, Coupling between a dark and a bright eigenmode in a terahertz metamaterial, Physical Review B, vol. 79, no. 8, p. 085111, 2009.Google Scholar
  68. 68.
    R. Singh, I. Al-Naib, D.R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces, Applied Physics Letters, vol. 105, no. 8, p. 081108, 2014.Google Scholar
  69. 69.
    A. Bitzer, H. Merbold, A. Thoman, T. Feurer, H. Helm, and M. Walther, Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial, Optics Express, vol. 17, no. 5, pp. 3826–3834, 2009.Google Scholar
  70. 70.
    J. Wallauer, A. Bitzer, S. Waselikowski, and M. Walther, Near-field signature of electromagnetic coupling in metamaterial arrays: a terahertz microscopy study, Optics Express, vol. 19, no. 18, pp. 17283–17292, 2011.Google Scholar
  71. 71.
    R. Singh, C. Rockstuhl, and W. Zhang, Strong influence of packing density in terahertz metamaterials, Applied Physics Letters, vol. 97, no. 24, p. 241108, 2010.Google Scholar
  72. 72.
    R. Singh, I.A.I. Al-Naib, M. Koch, and W. Zhang, Sharp Fano resonances in THz metamaterials, Optics Express, vol. 19, no. 7, pp. 6312–6319, 2011.Google Scholar
  73. 73.
    M. Manjappa, Y.K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, Active photoswitching of sharp Fano resonances in THz metadevices, Advanced Materials, vol. 29, no. 3, p. 1603355, 2017.Google Scholar
  74. 74.
    S. Zhang, D.A. Genov, Y. Wang, M. Liu, and X. Zhang, Plasmon-induced transparency in metamaterials, Physical Review Letters, vol. 101, no. 4, pp. 1–4, 2008.Google Scholar
  75. 75.
    J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S.A. Maier, Z. Tian, A.K. Azad, H.-T. Chen, A.J. Taylor, J. Han, and W. Zhang, Active control of electromagnetically induced transparency analogue in terahertz metamaterials, Nature Communications, vol. 3, p. 1151, 2012.Google Scholar
  76. 76.
    I. Al-Naib, E. Hebestreit, C. Rockstuhl, F. Lederer, D. Christodoulides, T. Ozaki, and R. Morandotti, Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonance, Physical Review Letters, vol. 112, p. 183903, 2014.Google Scholar
  77. 77.
    M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N.I. Zheludev, and R. Singh, Sharp toroidal resonances in planar terahertz metasurfaces, Advanced Materials, pp. 8206–8211, 2016.Google Scholar
  78. 78.
    I. Al-Naib, R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, D. Rocheleau, M. Chaker, T. Ozaki, and R. Morandotti, Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials, Applied Physics Letters, vol. 101, no. 7, p. 071108, 2012.Google Scholar
  79. 79.
    I. Al-Naib, Y. Yang, M.M. Dignam, W. Zhang, and R. Singh, Ultra-high Q even eigenmode resonance in terahertz metamaterials, Applied Physics Letters, vol. 106, no. 1, p. 011102, 2015.Google Scholar
  80. 80.
    N. Born, I. Al-Naib, C. Jansen, T. Ozaki, R. Morandotti, and M. Koch, Excitation of multiple trapped-eigenmodes in terahertz metamolecule lattices, Applied Physics Letters, vol. 104, no. 10, p. 101107, 2014.Google Scholar
  81. 81.
    N. Born, I. Al-Naib, C. Jansen, R. Singh, J.V. Moloney, M. Scheller, and M. Koch, Terahertz metamaterials with ultrahigh angular sensitivity, Advanced Optical Materials, vol. 3, no. 5, pp. 642–645, 2015.Google Scholar
  82. 82.
    L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, Fano resonances in terahertz metasurfaces: A figure of merit optimization, Advanced Optical Materials, vol. 3, no. 11, pp. 1537–1543, 2015.Google Scholar
  83. 83.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric field effect in atomically thin carbon films, Science, vol. 306, no. 5696, pp. 666–669, 2004.Google Scholar
  84. 84.
    L. a. Falkovsky, H. Search, C. Journals, A. Contact, M. Iopscience, and I.P. Address, Optical properties of graphene, Journal of Physics: Conference Series, vol. 129, p. 012004, 2008.Google Scholar
  85. 85.
    S. Das Sarma, S. Adam, E.H. Hwang, and E. Rossi, Electronic transport in two-dimensional graphene, Reviews of Modern Physics, vol. 83, no. 2, pp. 407–470, 2011.Google Scholar
  86. 86.
    V. Ryzhii, M. Ryzhii, A. Satou, N. Ryabova, T. Otsuji, V. Mitin, F.T. Vasko, A.A. Dubinov, V.Y. Aleshkin, and M.S. Shur, Future Trends in Microelectronics: From Nanophotonics to Sensors and Energy, ch. Graphene-based terahertz devices: Concepts and characteristics. 2010.Google Scholar
  87. 87.
    A. Tredicucci and M.S. Vitiello, Device concepts for graphene-based terahertz photonics, IEEE Journal on Selected Topics in Quantum Electronics, vol. 20, no. 1, pp. 130–138, 2014.Google Scholar
  88. 88.
    A.J. Frenzel, C.H. Lui, Y.C. Shin, J. Kong, and N. Gedik, Semiconducting-to-metallic photoconductivity crossover and temperature-dependent drude weight in graphene, Physical Review Letters, vol. 113, no. 5, pp. 1–11, 2014.Google Scholar
  89. 89.
    S.-F. Shi, T.-T. Tang, B. Zeng, L. Ju, Q. Zhou, A. Zettl, and F. Wang, Controlling graphene ultrafast hot carrier response from metal-like to semiconductor-like by electrostatic gating, Nano Letters, vol. 14, no. 3, pp. 1578–1582, 2014.Google Scholar
  90. 90.
    B. Sensale-Rodriguez, R. Yan, M.M. Kelly, T. Fang, K. Tahy, W.S. Hwang, D. Jena, L. Liu, and H.G. Xing, Broadband graphene terahertz modulators enabled by intraband transitions, Nature Communications, vol. 3, p. 780, 2012.Google Scholar
  91. 91.
    N. Papasimakis, S. Thongrattanasiri, N.I. Zheludev, and F. Garci̇a, de Abajo, The magnetic response of graphene split-ring metamaterials, Light: Science & Applications, vol. 2, no. 7, p. e78, 2013.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Biomedical Engineering Department, College of EngineeringUniversity of DammamDammamKingdom of Saudi Arabia
  2. 2.School of Electrical and Electronic EngineeringThe University of AdelaideAdelaideAustralia

Personalised recommendations