Advertisement

Influence of Reflections on Frequency Tunability and Mode Competition in the Second-Harmonic THz Gyrotron

  • Eduard M. KhutoryanEmail author
  • Toshitaka Idehara
  • Maria M. Melnikova
  • Nikita M. Ryskin
  • Olgierd Dumbrajs
Article

Abstract

Effect of delayed reflection on operation of a second-harmonic terahertz (THz)-band gyrotron is studied. Theoretical analyses, numerical calculations, and experimental observations for the 0.394-THz Fukui University (FU) and continuous wave (CW) IIB gyrotron are presented. The reflections decrease starting current and expand frequency tunability range owing to excitation of high-order axial modes. They also increase frequency stability, i.e., reduce frequency change due to variation of the magnetic field. In addition, the reflections strongly affect mode competition causing suppress of the second-harmonic mode by the fundamental one and vice versa or, in the case of cooperative mode interaction, mutual power increase.

Keywords

Gyrotron Second harmonic Mode competition Reflection Frequency tunability 

Notes

Acknowledgements

N.M.R. and M.M.M. acknowledge financial support from the Russian Foundation for Basic Research grant no 15-02-01798a.

References

  1. 1.
    T. Idehara, T. Saito, I. Ogawa, S. Mitsudo, Y. Tatematsu, and S. Sabchevski, The potential of the gyrotrons for development of the sub-terahertz and the terahertz frequency range—a review of novel and prospective applications, Thin Solid Films, vol. 517, 1503–1506, 2008.CrossRefGoogle Scholar
  2. 2.
    E.A. Nanni, A.B. Barnes, R.G. Griffin, and R.J. Temkin, THz dynamic nuclear polarization NMR, IEEE Trans. Terahertz Sci. Technol., vol. 1, no. 1, pp. 145–163, 2011.CrossRefGoogle Scholar
  3. 3.
    M.Y. Glyavin, T. Idehara, and S.P. Sabchevski, Development of THz gyrotrons at IAP RAS and FIR UF and their applications in physical research and high-power THz technologies, IEEE Trans. Terahertz Sci. Technol., vol. 5, no. 5, pp. 788–797, 2015a.CrossRefGoogle Scholar
  4. 4.
    A.C. Torrezan, S.-T. Han, I. Mastovsky, M.A. Shapiro, J.R. Sirigiri, R.J. Temkin, A.B. Barnes, and R.G. Griffin, Continuous-wave operation of a frequency-tunable 460-GHz second-harmonic gyrotron for enhanced nuclear magnetic resonance, IEEE Trans. Plasma Sci., vol. 38, no. 6, pp. 1150–1159, 2010.Google Scholar
  5. 5.
    O. Dumbrajs, E.M. Khutoryan, and T. Idehara, Hysteresis and frequency tunability of gyrotrons, J. Infrared Millim. Terahertz Waves, vol. 37, pp. 551–560, 2016.CrossRefGoogle Scholar
  6. 6.
    V. L. Bratman, A.V. Savilov, and T.H. Chang, Possibilities for continuous frequency tuning in terahertz gyrotrons with nontunable electrodynamic systems, Radiophys. Quantum Electron., vol. 58, no. 9, pp. 660–672, 2016.CrossRefGoogle Scholar
  7. 7.
    T. Saito, Y. Tatematsu, Y. Yamaguchi, S. Ikeuchi, S. Ogasawara, N. Yamada, R. Ikeda, I. Ogawa, and T. Idehara, Observation of dynamic interaction between fundamental and second-harmonic modes in a high-power sub-terahertz gyrotron operating in regimes of soft and hard self-excitation, Phys. Rev. Lett., vol. 109, 155001, 2012.CrossRefGoogle Scholar
  8. 8.
    M.Y. Glyavin, G.G. Denisov, M.L. Kulygin, and Y.V. Novozhilova, Stabilization of gyrotron frequency by reflection from nonresonant and resonant loads, Tech. Phys. Lett., vol. 41, no. 7, pp 628–631, 2015b.CrossRefGoogle Scholar
  9. 9.
    M.Y. Glyavin, G.G. Denisov, M.L. Kulygin, M.M. Melnikova, Y.V. Novozhilova, and N.M. Ryskin, Gyrotron frequency stabilization by a weak reflected wave, Radiophys. Quantum Electron., vol. 58, no. 9, pp. 673–683, 2016.CrossRefGoogle Scholar
  10. 10.
    I.V. Zotova, N.S. Ginzburg, G.G. Denisov, R.M. Rozental’, and A. S. Sergeev, Frequency locking and stabilization regimes in high-power gyrotrons with low-Q resonators, Radiophys. Quantum Electron., vol. 58, no. 9, pp. 684–693, 2016.CrossRefGoogle Scholar
  11. 11.
    M.M. Melnikova, A.G. Rozhnev, N.M. Ryskin, A.V. Tyshkun, M.Y. Glyavin, and Y.V. Novozhilova, Frequency stabilization of a 0.67-THz gyrotron by self-injection locking, IEEE Trans. Electron Devices, vol. 63, pp. 1288–1293, 2016.CrossRefGoogle Scholar
  12. 12.
    N. Kharchev, A. Cappa,·D. Malakhov, J. Martinez, E. Konchekov, A. Tolkachev, V. Borzosekov, K. Sarksyan, and M. Petelin, Influence of controlled reflected power on gyrotron performance, J. Infrared Millim. Terahertz Waves, vol. 36, no. 1, pp. 145–1156, 2015.Google Scholar
  13. 13.
    M.M. Chumakova, S.A. Usacheva, M.Y. Glyavin, Y.V. Novozhilova, and N.M. Ryskin, Mode competition in a two-mode gyrotron with delayed reflections, IEEE Trans. Plasma Sci. vol. 42, pp. 2030–2036, 2014.CrossRefGoogle Scholar
  14. 14.
    A.V. Chirkov, G.G. Denisov, and A.N. Kuftin, Perspective gyrotron with mode converter for co- and counter-rotation operating modes, Appl. Phys. Lett., vol. 106, 263501, 2015.CrossRefGoogle Scholar
  15. 15.
    R. Lang and K. Kobayashi, External optical feedback effects on semiconductor injection laser properties, IEEE J. Quantum Electron., vol. 16, no. 3, pp. 347–355, 1980.CrossRefGoogle Scholar
  16. 16.
    F.S. Rusin and G.D. Bogomolov, Orotron: an electronic oscillator with an open resonator and reflecting grating, Proc. IEEE, vol. 57, no. 4, pp. 720–722, 1969.CrossRefGoogle Scholar
  17. 17.
    Yu.I. Evdokimenko, K.A. Lukin, I.D. Revin, B.K. Skrynnik, and V.P. Shestopalov, A new mechanism of excitation of a diffraction-radiation generator (free-electron laser), Sov. Phys. Doklady, vol. 27, pp. 554, 1982.Google Scholar
  18. 18.
    G. S. Nusinovich, Introduction to the physics of gyrotrons, Baltimore: The Johns Hopkins Univ. Press, 2004.Google Scholar
  19. 19.
    M.I. Airila and O. Dumbrajs, Generalized gyrotron theory with inclusion of adiabatic electron trapping in the presence of a depressed collector, Phys. Plasmas, vol. 8, no. 4, pp. 1358–1362, 2001.CrossRefGoogle Scholar
  20. 20.
    O. Dumbrajs, T. Idehara, S. Watanabe, A. Kimura, H. Sasagawa, L. Agusu, S. Mitsudo, and B. Piosczyk, Reflections in gyrotrons with axial output, IEEE Trans. Plasma Sci., vol. 32, no. 3, pp. 899–902, 2004.CrossRefGoogle Scholar
  21. 21.
    O. Dumbrajs, M.Y. Glyavin, V.E. Zapevalov, and N. A. Zavolsky, Influence of reflections on mode competition in gyrotrons, IEEE Trans. Plasma Sci., vol. 28, no. 3, pp. 588–596, 2000.CrossRefGoogle Scholar
  22. 22.
    T. Idehara, I. Ogawa, L. Agusu, T. Kanemaki, S. Mitsudo, T. Saito, T. Fujiwara, and H. Takahashi, Development of 394.6 GHz CW gyrotron (gyrotron FU CW II) for DNP/proton-NMR at 600 MHz, Int. J. Infrared Millim. Waves, vol. 28, no. 6, pp 433–442, 2007.CrossRefGoogle Scholar
  23. 23.
    E. Borie, Effect of reflection on gyrotron operation, IEEE Trans., Microwave Theory Tech., vol. 49, no. 7, pp. 1342–1345, 2001.CrossRefGoogle Scholar
  24. 24.
    Yu.V. Novozhilova, N.M. Ryskin, and S.A. Usacheva, Nonstationary processes in an oscillator with delayed reflection from the load, Tech. Phys., vol. 56, no. 9, pp. 1235–1242, 2011.CrossRefGoogle Scholar
  25. 25.
    T. Idehara, et al., The development of 460 GHz gyrotrons for 700 MHz DNP-NMR spectroscopy, J. Infrared Millim. Terahertz Waves, vol. 36, pp. 613–627, 2015.CrossRefGoogle Scholar
  26. 26.
    T. Idehara, S. Mitsudo, M. Pereyaslavets, Y. Shimizu, and I. Ogawa, Mode cooperation in a submillimeter wave FU series gyrotron, Int. J. Infrared Millim. Waves, vol. 20, no. 7, pp. 1249–1270, 1999.CrossRefGoogle Scholar
  27. 27.
    G.F. Brand, T. Idehara, T. Tatsukawa and I. Ogawa, Mode competition in a high harmonic gyrotron, Int. J. Electron., vol. 72, pp. 745–758, 1992.CrossRefGoogle Scholar
  28. 28.
    G.S. Nusinovich, Mode interaction in gyrotrons, Int. J. Electron., vol. 51, pp. 457–474, 1981.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Eduard M. Khutoryan
    • 1
    • 2
    Email author
  • Toshitaka Idehara
    • 1
  • Maria M. Melnikova
    • 3
  • Nikita M. Ryskin
    • 3
    • 4
  • Olgierd Dumbrajs
    • 1
    • 5
  1. 1.Research Center for Development of Far-Infrared RegionUniversity of FukuiFukuiJapan
  2. 2.O. Ya. Usikov Institute for Radiophysics and Electronics IRE NASUKharkivUkraine
  3. 3.Saratov State UniversitySaratovRussia
  4. 4.Saratov Branch, Institute of Radio Engineering and Electronics RASSaratovRussia
  5. 5.Institute of Solid State PhysicsUniversity of LatviaRigaLatvia

Personalised recommendations