Advertisement

Non-destructive Analysis of Material Detachments from Polychromatically Glazed Terracotta Artwork by THz Time-of-Flight Spectroscopy

  • Kirsti Krügener
  • Stefan F. Busch
  • Amin Soltani
  • Enrique Castro-Camus
  • Martin Koch
  • Wolfgang Viöl
Article

Abstract

The damage caused by the environment to exposed glazed terracotta objects is usually not externally visible. For instance, the detachment of the glaze owing to subsurface crack formation or whole cavities in the area of the terracotta cannot be located visually. In this article, we demonstrate that terahertz time-of-flight spectroscopy is suitable to locate and measure the air gaps under the glaze detachments which could only be done by X-ray axial tomography before. This tool will be very useful to guide the restoration process, particularly for pieces that are still attached to buildings or other structures that cannot be transported to a tomography facility.

Keywords

Terahertz Non-destructive test Cultural heritage Terracotta Engobe Glaze 

Notes

Acknowledgments

The authors would like to thank the Deutsche Bundesstiftung Umwelt (Germany) for their financial support and the Lower Saxony office for the protection of monuments and sites to provide us with the investigated object.

References

  1. 1.
    Artioli, G. Scientific Methods and Cultural Heritage: An Introduction to the Application of Materials Science to Archaeometry and Conservation Science. (Oxford University Press, 2010).Google Scholar
  2. 2.
    Hunsche, S, Mittleman, D. M., Koch, M. & Nuss, M.C. New dimensions in T-ray imaging. IEICE TRANSACTIONS on Electronics E81-C, 269–276 (1998).Google Scholar
  3. 3.
    Song, H.-J. & Nagatsuma, T. Handbook of Terahertz Technologies: Devices and Applications. (CRC Press, 2015).Google Scholar
  4. 4.
    Fukunaga, K., Kaori, F., Yuichi, O., Shin’ichiro, H. & Iwao, H. Terahertz spectroscopy for art conservation. IEICE Electronics Express 4, 258–263 (2007).CrossRefGoogle Scholar
  5. 5.
    Adam, A. J. L., Planken, P. C. M., Meloni, S. & Dik, J. TeraHertz imaging of hidden paint layers on canvas. Opt. Express 17, 3407–3416 (2009).CrossRefGoogle Scholar
  6. 6.
    Walker, G. C. et al. Sub-surface terahertz imaging through uneven surfaces: visualizing Neolithic wall paintings in Çatalhöyük. Opt. Express 21, 8126–8134 (2013).CrossRefGoogle Scholar
  7. 7.
    Seco-Martorell, C. et al. Goya’s artwork imaging with Terahertz waves. Opt. Express 21, 17800 (2013).CrossRefGoogle Scholar
  8. 8.
    Krügener, K. et al. Terahertz meets sculptural and architectural art: evaluation and conservation of stone objects with T-ray technology. Sci. Rep. 5, 14842 (2015).CrossRefGoogle Scholar
  9. 9.
    Schwerdtfeger, M., Castro-Camus, E., Krügener, K., Viöl, W. & Koch, M. Beating the wavelength limit: three-dimensional imaging of buried subwavelength fractures in sculpture and construction materials by terahertz time-domain reflection spectroscopy. Appl. Opt. 52, 375 (2013).CrossRefGoogle Scholar
  10. 10.
    Koch Dandolo, C. L., Marcello, P., Costanza, C. & Jepsen, P. U. Non-invasive Florentine renaissance panel painting replica structures investigation by using terahertz time-domain imaging (THz-TDI) technique. J. Infrared Millim. Terahertz Waves (2016). doi: 10.1007/s10762-016-0311-8 Google Scholar
  11. 11.
    Fukunaga, K., Kaori, F., Yuichi, O., Shinichiro, H. & Iwao, H. Terahertz imaging for analysis of historic paintings and manuscripts. in 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves (2008). doi: 10.1109/icimw.2008.4665417
  12. 12.
    HJ Schwarz, E. Stadlbauer. Conservation and restoration methods of glazed architectural ceramics. Conservator-restorers’ bulletin 16, 54–59 (2005).Google Scholar
  13. 13.
    Soltani, A. et al. Error from delay drift in terahertz attenuated total reflection spectroscopy. J. Infrared Millim. Terahertz Waves 35, 468–477 (2014).CrossRefGoogle Scholar
  14. 14.
    Busch, S. F., Town, G. E., Scheller, M. & Koch, M. Focus free terahertz reflection imaging and tomography with Bessel beams. J. Infrared Millim. Terahertz Waves 36, 318–326 (2014).CrossRefGoogle Scholar
  15. 15.
    Castro-Camus, E. & Johnston, M. B. Extraction of the anisotropic dielectric properties of materials from polarization-resolved terahertz time-domain spectra. J. Opt. A: Pure Appl. Opt. 11, 105206 (2009).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kirsti Krügener
    • 1
  • Stefan F. Busch
    • 2
  • Amin Soltani
    • 2
  • Enrique Castro-Camus
    • 3
  • Martin Koch
    • 2
  • Wolfgang Viöl
    • 1
  1. 1.HAWK University of Applied Sciences and Arts, Faculty of Natural Sciences and TechnologyGoettingenGermany
  2. 2.Department of PhysicsPhilipps-Universität MarburgMarburgGermany
  3. 3.Centro de Investigaciones en Optica A.C.LeonMexico

Personalised recommendations